Distancia entre un punto accesible y otro inaccesible.

Usos de la trigonometría. Cálculo de alturas y distancias (II)

Ver artículo en formato imprimible (pdf) aquí

Distancia entre un punto accesible y otro inaccesible

Supongamos que deseamos medir la distancia \(c\) desde \(A\) hasta \(B\), puntos entre los cuales media un obstáculo. A diferencia del caso anterior, no tenemos acceso al punto \(B\), tal y como se se muestra en la figura siguiente.

Distancia entre un punto accesible y otro inaccesible.

Pues bien, en este caso elegimos un punto \(C\) y medimos la distancia hasta \(A\), que llamaremos \(b\). También mediremos los ángulos \(\widehat{ACB}\), al que llamaremos \(\gamma\), y \(\widehat{BAC}\). al que llamaremos \(\alpha\). Medidos estos dos ángulos, sabremos la medida del ángulo \(\widehat{ABC}\), al que llamaremos \(\beta\), pues la suma de los tres ángulos de un triángulo es 180 grados: \(\beta=180^{\text{o}}-(\alpha+\gamma)\).

Haciendo uso del teorema de los senos tenemos que

\[\frac{c}{\text{sen}\,{\gamma}}=\frac{b}{\text{sen}\,{\beta}}=\frac{a}{\text{sen}\,{\alpha}}\]

y de la expresión anterior podemos despejar \(c\):

\[c=\frac{b}{\text{sen}\,{\beta}}\cdot\text{sen}\,{\gamma}\]

  • Ejemplo

Para calcular la anchura \(\overline{AB}\) de un río se elige un punto \(C\) que está en la misma orilla que \(A\) y se toman las siguientes medidas: \(\overline{AC}=67\) m, \(\widehat{BAC}=99^{\text{o}}\) \(\widehat{ACB}=20^{\text{o}}\). ¿Cuál es la distancia entre \(A\) y \(B\)?

Solución

En este caso \(b=67\), \(\gamma=20^{\text{o}}\) y \(\beta=180^{\text{o}}-(99^{\text{o}}+20^{\text{o}})=61^{\text{o}}\). Por tanto:

\[c=\frac{67}{\text{sen}\,61^{\text{o}}}\cdot\text{sen}\,20^{\text{o}}\Rightarrow c\approxeq26,2\,\text{m.}\]

O sea, la distancia entre \(A\) y \(B\) es de, aproximadamente, 26,2 metros.

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

x

Check Also

Visualización propiedades probabilidad

Sobre probabilidad en Matemáticas II (2º de Bachillerato)

Vamos a invertir la forma de trabajar para aprender teoría y práctica del bloque de ...

Resolviendo problemas de geometría con desmos

En la clase de 1º de Bachillerato (Matemáticas I) hemos trabajado por grupos de dos ...

Una integral racional más elaborada

En este artículo vamos a calcular una primitiva de la función \(\displaystyle f(x)=\frac{x^3-1}{x^3+1}\). Es decir, ...

A %d blogueros les gusta esto: