Home » Archivo de Etiquetas: teorema del valor medio

Archivo de Etiquetas: teorema del valor medio

Acceso Universidad Matemáticas II – Aplicaciones de las derivadas (5)

Este ejercicio de Matemáticas II fue propuesto en julio de 2018 por la Universidad de Castilla-La Mancha en las Pruebas de Evaluación para Acceso a la Universidad (propuesta A). Enunciado Después de la administración por vía oral de un fármaco, la concentración de este en sangre sigue el modelo: \(C(t)=at^2e^{-bt}\), donde \(t\in[0,+\infty)\) es el tiempo en horas transcurridos desde la ...

Leer más »

Acceso Universidad Matemáticas II – Aplicaciones de las derivadas (4)

Este ejercicio de Matemáticas II fue propuesto en junio de 2015 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Enunciado Dada la función \(f(x)=e^{\text{sen}\,x}+x^2+ax+b\,\); \(\ a,\,b\in\mathbb{R}\): a) Determina los parámetros \(a,\,b\in\mathbb{R}\) sabiendo que la gráfica de \(f(x)\) pasa por el punto \((0,2)\) y que en dicho punto tiene un ...

Leer más »

Acceso Universidad Matemáticas II – Aplicaciones de las derivadas (2)

Este ejercicio de Matemáticas II fue propuesto en junio de 2018 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta B). Enunciado a) Prueba que cualquiera que sea la constante \(a\), la función \[f(x)=x^3-5x^2+7x+a\] cumple las hipótesis del teorema de Rolle en el intervalo \([1,3]\). b) Calcula razonadamente un punto del intervalo abierto ...

Leer más »