Home » Archivo de Etiquetas: rectas

Archivo de Etiquetas: rectas

La recta en el plano. Paralelismo, perpendicularidad y distancias

Una recta \(r\) está completamente determinada si conocemos un punto suyo \(A(a_1,a_2)\) y un vector \(\vec{u}=(u_1,u_2)\) que tenga la misma dirección de la de la recta (vector director). En este caso, cualquier punto \(P(x,y)\) lo podemos escribir usando la siguiente combinación lineal: \(\overrightarrow {OP} = \overrightarrow {OA} + \lambda \vec u\) donde \(O(0,0)\) es el origen de coordenadas y \(\lambda \in \mathbb{R}\) (parámetro). Si ...

Leer más »

Matemáticas en el gallinero

Al decir de muchos, Marilyn vos Savant es la mujer más inteligente del mundo; en todo caso, durante añós figuró en el Libro Guinnes de los récords como la persona con el coeficiente de inteligencia más alto que jamás se haya medido, hasta que se suprimió esta sección del libro. Esta señora publica una columna semanal (Ask Marilyn) en la revista estadounidense Parade ...

Leer más »

5 ejercicios de geometría: rectas y planos, espacio euclídeo, problemas métricos

En las matemáticas del último curso de bachillerato de ciencias y tecnología, tras hacer un estudio exhaustivo de las matrices, determinantes y la resolución de sistemas de ecuaciones lineales (método de Gauss y Teorema de Rouché-Frobenius), se procede al estudio de la geometría en el espacio. Las matrices, los determinantes, el cálculo de rangos y la resolución de sistemas adquiere ...

Leer más »

Sistemas de ecuaciones lineales dependientes de un parámetro

Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que dependan de un parámetro. Recordemos pues, en primer lugar, el enunciado del Teorema de Rouché-Frobenius. Teorema de Rouché-Frobenius Sea \[\left\{ \begin{array}{l} {a_{11}}{x_1} + {a_{12}}{x_2} + \,.\,.\,.\,.\,.\, + {a_{1n}}{x_n} = {b_1}\\ {a_{21}}{x_1} ...

Leer más »