Home » Archivo de Etiquetas: rango matriz

Archivo de Etiquetas: rango matriz

Sistemas de ecuaciones lineales dependientes de un parámetro

Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que dependan de un parámetro. Recordemos pues, en primer lugar, el enunciado del Teorema de Rouché-Frobenius. Teorema de Rouché-Frobenius Sea \[\left\{ \begin{array}{l} {a_{11}}{x_1} + {a_{12}}{x_2} + \,.\,.\,.\,.\,.\, + {a_{1n}}{x_n} = {b_1}\\ {a_{21}}{x_1} ...

Leer más »

Sobre vectores y matrices. Independencia lineal. Rango de una matriz

Espacios vectoriales Llamaremos \(\mathbb{R}^2\) al conjunto de todos los pares ordenados de la forma \((a_1,a_2)\) tal que \(a_1,a_2\in\mathbb{R}\). Es decir: \[\mathbb{R}^2=\{(a_1,a_2):a_1,a_2\in\mathbb{R}\}\] De la misma forma: \[\mathbb{R}^3=\{(a_1,a_2,a_3):a_1,a_2,a_3\in\mathbb{R}\}\] \[\mathbb{R}^4=\{(a_1,a_2,a_3,a_4):a_1,a_2,a_3,a_4\in\mathbb{R}\}\] Y, en general: \[\mathbb{R}^n=\{(a_1,a_2,\ldots,a_n):a_1,a_2,\ldots,a_n\in\mathbb{R}\}\] Si vemos los elementos de \(\mathbb{R}^n\) como matrices fila podemos identificar este conjunto con el conjunto de las matrices de una fila y \(n\) columnas: \(\mathcal{M}_{1\times n}\). Recordemos que ...

Leer más »