Home » Archivo de Etiquetas: perpendicularidad

Archivo de Etiquetas: perpendicularidad

Acceso Universidad Matemáticas II – Geometría (2)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Enunciado Dadas las rectas \[r\equiv\begin{cases} x-y=1\\ y+z=1 \end{cases}\quad\text{y}\quad s\equiv\begin{cases} x=t\\ y=1-t\\ z=t \end{cases}\] se pide a) Determina su posición relativa. b) Halla el ángulo que forman sus vectores de dirección.

Leer más »

La recta en el plano. Paralelismo, perpendicularidad y distancias

Una recta \(r\) está completamente determinada si conocemos un punto suyo \(A(a_1,a_2)\) y un vector \(\vec{u}=(u_1,u_2)\) que tenga la misma dirección de la de la recta (vector director). En este caso, cualquier punto \(P(x,y)\) lo podemos escribir usando la siguiente combinación lineal: \(\overrightarrow {OP} = \overrightarrow {OA} + \lambda \vec u\) donde \(O(0,0)\) es el origen de coordenadas y \(\lambda \in \mathbb{R}\) (parámetro). Si ...

Leer más »

Distancia de un punto a una recta

La distancia de un punto \(P(p_1,p_2)\) a una recta \(r\equiv Ax+By+C=0\) es la longitud del segmento de perpendicular a la recta, trazada por el punto \(P\), comprendido entre éste y aquella. En la figura 10, \(d(P,r)=d(P,M)\). Para calcularla podemos hallar la recta s perpendicular a \(r\) que pasa por \(P\), resolver el sistema formado por ambas  rectas para hallar el punto ...

Leer más »

Ecuación normal de la recta. Cosenos directores

En la figura 9 hemos tomado la recta \[r\equiv Ax+By+C=0\] Sobre ella se consideran los puntos \(A(a_1,a_2)\) y \(X(x,y)\) que determinan el vector \[\overrightarrow{AX}=(x-a_1,y-a_2)\] El vector \(\vec{z}\) se ha construido unitario y perpendicular a \(r\). Por tanto tiene la misma dirección que el vector \(\vec{v}=(A,B)\). Para obtener \(\vec{z}\) basta multiplicar \(\vec{v}\) por el inverso de su módulo: \[\vec{z}=\frac{1}{|\vec{v}|}\cdot(A,B)=\left(\frac{A}{\sqrt{A^2+B^2}},\frac{B}{\sqrt{A^2+B^2}}\right)\] Ahora bien: \[\overrightarrow{AX}\perp\vec{z}\Rightarrow\frac{A\cdot(x-a_1)}{\sqrt{A^2+B^2}}+\frac{B\cdot(y-a_2)}{\sqrt{A^2+B^2}}=0\] O sea: ...

Leer más »

Paralelismo y perpendicularidad

Si dos rectas \(r\) y \(s\) de pendientes respectivas \(m_1\) y \(m_2\) son paralelas, forman un ángulo de \(0^{\circ}\). En ese caso: \[\text{tg}\,0^{\circ}=0\Rightarrow\frac{m_2-m_1}{1+m_2\cdot m_1}=0\Rightarrow m_2-m_1=0\Rightarrow m_2=m_1\] Esto nos lleva a un resultado conocido: dos rectas son paralelas si sus pendientes son iguales. \[r||s\Leftrightarrow m_r=m_s\] Este resultado está de acuerdo con la fórmula que veíamos en la sección 1 pues, efectivamente, si consideramos dos ...

Leer más »