Archivo de Etiquetas: número e

Resolviendo algunas indeterminaciones. Límites funcionales de interés (I)

Se ha demostrado en un artículo anterior que \[\lim_{x\rightarrow\pm\infty}\left(1+\dfrac{1}{x}\right)^x=\text{e}\quad(1)\] La demostración la puedes ver aquí. Es más, en realidad se ha demostrado un resultado más general: \[f(x)\rightarrow\pm\infty\Rightarrow\left(1+\dfrac{1}{f(x)}\right)^{f(x)}\rightarrow\text{e}\quad(2)\] Si en la expresión \((2)\) hacemos el cambio de variable \(h(x)=\dfrac{1}{f(x)}\) entonces, como ...

Leer más »

Descubriendo el número \(e\)

Antes de leer este artículo, en el que vamos a demostrar la existencia de un número irracional como límite de una determinada sucesión (el número \(e\)), se recomienda hacer una lectura atenta de este otro: “Sucesiones de números reales. Sucesiones ...

Leer más »

El número \(e\)

Si se introduce el número \(e\), uno de los números reales más importantes, a la manera matemáticamente formal, quizás dé un poco de miedo. Así que lo haré de una forma, si no divertida, al menos curiosa. Para ello prácticamente ...

Leer más »

La función exponencial

Las funciones exponenciales se utilizan para describir fenómenos de crecimiento y decrecimiento. Una función exponencial en su versión más simplificada adopta la forma \(f(x)=a^x\) donde la base \(a\) es un número positivo y distinto de la unidad. Dominio y continuidad ...

Leer más »