Este ejercicio de Matemáticas II fue propuesto en julio de 2018 por la Universidad de Castilla-La Mancha en las Evaluación para el Acceso a la Universidad (propuesta B). Enunciado Calcula razonadamente las siguientes integrales: \[\int\frac{2x^3-x^2+2}{x^2-x}\,dx\quad;\quad\int_1^2(2x-3)e^x\,dx\]
Leer más »Archivo de Etiquetas: métodos de integración
Acceso Universidad Matemáticas II – Integrales y áreas (4)
Este ejercicio de Matemáticas II fue propuesto en septiembre de 2014 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta B). Enunciado Calcula las integrales \[\int\frac{e^x}{e^x-e^{-x}}\,dx\quad;\quad\int\frac{2}{4+x^2}\,dx\]
Leer más »Acceso Universidad Matemáticas II – Integrales y áreas (3)
Este ejercicio de Matemáticas II fue propuesto en junio de 2018 por la Universidad de Castilla-La Mancha en las Pruebas de Evaluación para Acceso a la Universidad (propuesta B). Enunciado Dadas las funciones \(f(x)=2xe^{-x}\) y \(g(x)=x^2e^{-x}\), calcula razonadamente el área del recinto cerrado limitado por las gráficas de esas funciones.
Leer más »Acceso Universidad Matemáticas II – Integrales y áreas (2)
Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Enunciado Calcula la integral \[\int\frac{x^2-3x+1}{x^3-5x^2+8x-4}dx\]
Leer más »Acceso Universidad Matemáticas II – Integrales y áreas (1)
Este ejercicio de Matemáticas II fue propuesto en junio de 2014 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Enunciado Calcula la integral definida \[\int_0^1(x^2+x+1)e^{-x}dx\]
Leer más »Integrales indefinidas. Cálculo de primitivas (II)
En la entrada anterior sobre integrales indefinidas se obtuvieron las siguientes: \[\int{\cos^2x\,dx}=\frac{x+\text{sen}\,x\cos x}{2}+C\] \[\int{\text{sen}^2x\,dx}=\frac{x-\text{sen}\,x\cos x}{2}+C\] \[\int{x\cos x\,dx}=x\,\text{sen}\,x+\cos x+C\] \[\int{x\,\text{sen}\,x\,dx}=-x\cos x+\text{sen}\,x+C\] \[\int{\text{sen}\,x\cos x\,dx}=\frac{\text{sen}^2x}{2}+C=-\frac{\cos^2x}{2}+C\] Vamos a calcular un par de ellas más. Para ello utilizaremos algunas de las fórmulas anteriores. Si introduces la expresión x*(sin(x))^2 en WolframAlpha obtienes la integral indefinida: \[\int{x\,\text{sen}^2x\,dx}=\frac{1}{8}\left(2x(x-\text{sen}\,2x)-\cos2x\right)+C\] que es equivalente a la obtenida anterioremente ya que \[\frac{1}{8}\left(2x(x-\text{sen}\,2x)-\cos2x\right)=\frac{1}{8}(2x^2-2x\,\text{sen}\,2x-\cos2x)=\] ...
Leer más »Integrales indefinidas. Cálculo de primitivas (I)
Utilizando distintos métodos de integración se resuelven muchas integrales al nivel de 2º de Bachillerato Científico-Técnico (en la materia de Matemáticas II). Las que siguen contienen senos y cosenos y una técnica común es utilizar el método de integración por partes. Hay otra forma más rápida de hacer esta integral, pero hemos de recordar una fórmula trigonométrica: \[\cos 2x=\cos^2x-\text{sen}^2x\Rightarrow\cos 2x=\cos^2x-(1-\cos^2x)\Rightarrow\] ...
Leer más »El método de integración por partes
El método de integración por partes se deduce de la regla de derivación de un producto. Dadas dos funciones \(f\) y \(g\) tenemos que: \[\left(f(x)\cdot g(x)\right)’=f'(x)\cdot g(x)+f(x)\cdot g'(x)\] Si despejamos el último sumando la expresión anterior la podemos escribir así: \[f(x)\cdot g'(x)=\left(f(x)\cdot g(x)\right)’-f'(x)\cdot g(x)\] Integrando las funciones de ambos miembros de la igualdad tendremos: \[\int f(x)\cdot g'(x)dx=f(x)\cdot g(x)-\int f'(x)\cdot g(x)dx\] ...
Leer más »Integrales indefinidas propuestas en Selectividad
En los exámenes de Selectividad (PAEG) de Matemáticas II que la Universidad de Castilla-La Mancha ha propuesto durante estos últimos años, han aparecido, como es natural, muchos ejercicios de cálculo de integrales indefinidas. Para resolverlas, o bien la integral es inmediata, o bien se utilizan alguno de los métodos vistos durante el curso en Matemáticas II: sustitución o cambio de ...
Leer más »