Home » Archivo de Etiquetas: matemáticas selectividad (página 2)

Archivo de Etiquetas: matemáticas selectividad

Acceso Universidad Matemáticas II – Geometría (2)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Enunciado Dadas las rectas \[r\equiv\begin{cases} x-y=1\\ y+z=1 \end{cases}\quad\text{y}\quad s\equiv\begin{cases} x=t\\ y=1-t\\ z=t \end{cases}\] se pide a) Determina su posición relativa. b) Halla el ángulo que forman sus vectores de dirección.

Leer más »

Acceso Universidad Matemáticas II – Aplicaciones de las derivadas (1)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Enunciado a) Determina el valor del parámetro \(a\in\mathbb{R}\) para que la función \(f(x)=(x-a)e^x\) tenga un mínimo relativo en \(x=0\). Razona que, de hecho, es un mínimo absoluto. b) Para el valor de ...

Leer más »

Acceso Universidad Matemáticas II – Matrices, determinantes y sistemas (2)

Este ejercicio de Matemáticas II fue propuesto en junio de 2014 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Enunciado a) Sabiendo que \(A\) es una matriz cuadrada de orden 2 tal que \(|A|=5\), calcula razonadamente el valor de los determinantes \[|-A|\quad;\quad|A^{-1}|\quad;\quad|A^T|\quad;\quad|A^3|\] b) Sabiendo que \[\left|\begin{array}{ccc} a & b & ...

Leer más »

Acceso Universidad Matemáticas II – Geometría (1)

Este ejercicio de Matemáticas II fue propuesto en junio de 2014 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Enunciado a) Hallar \(a\in\mathbb{R}\) para que las rectas \[r\equiv\begin{cases} x+2y-z=1\\ -x+y-3z=2 \end{cases}\quad\text{y}\quad s\equiv\begin{cases} x+y=0\\ 3x+2y+z=a \end{cases}\] se corten en un punto. b) Para dicho valor de \(a\), da la ecuación implícita de ...

Leer más »

Acceso Universidad Matemáticas II – Continuidad y derivadas (1)

Este ejercicio de Matemáticas II fue propuesto en junio de 2014 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Enunciado a) Calcula los valores de los parámetros \(a,b\in\mathbb{R}\) para que la función \[f(x)=\begin{cases} x^2-2x+a\quad \text{si}\quad x\leq0\\ x^2+be^x+3\quad\text{si}\quad x>0 \end{cases}\] sea continua y derivable en \(x=0\). [1,5 puntos] b) Para los valores ...

Leer más »

Determinantes. Propiedades y ejercicios

En la imagen superior tienes el desarrollo de un determinante de orden tres por la regla de Sarrus. \[\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}=(a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32})-\\ \qquad\qquad\qquad -(a_{13}a_{22}a_{31}+a_{12}a_{21}a_{33}+a_{11}a_{23}a_{32})\] El determinante de orden dos es muy sencillo de calcular: \[\begin{vmatrix} a_{11} &a_{12} \\ a_{21} &a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}\] Cuando el determinante es de orden ...

Leer más »

Problema de optimización 2

Problema de optimización para Matemáticas II (2º de Bachillerato de la modalidad de Ciencias y Tecnología). Enunciado. Dadas dos esferas de radios \(r\) y \(r’\) tales que la distancia entre sus centros es \(d\), se sitúa un punto luminoso en la línea de sus centros. ¿En qué posición habrá que situarlo para que la suma de las superficies iluminadas en ambas ...

Leer más »