Archivo de Etiquetas: matemáticas selectividad

Integración de funciones trigonométricas

Sea \(\int\text{R}\,(\text{sen}\,x,\,\cos x,\,\text{tg}\,x)\) una función racional de \(\text{sen}\,x\), \(\cos x\) y \( \text{tg}\,x\), es decir, una función en la que \(\text{sen}\,x\), \(\cos x\) y \( \text{tg}\,x\) aparecen ligados por sumas, restas, multiplicaciones y divisiones. Si queremos integrar esta función y ...

Leer más »

Una integral de apariencia «inocente»

Se trata de calcular la primitiva de la función \(\dfrac{1}{\text{sen}\,x}\), o lo que es lo mismo, la siguiente integral indefinida: \[\int \frac{1}{\text{sen}\,x}\,dx \] Primer método Haremos uso del cambio de variable \(\text{sen}\,x=t\). De aquí, derivando obtenemos: \[\cos x\,dx=dt\Rightarrow dx=\frac{dt}{\cos x}=\frac{dt}{\sqrt{1-t^2}}\] ...

Leer más »