Home » Archivo de Etiquetas: límite de una sucesión

Archivo de Etiquetas: límite de una sucesión

Funciones continuas. Definición y propiedades

Para la lectura de este artículo es recomendable haber leído con anterioridad otros tres artículos relacionados con las sucesiones de números reales y las funciones reales de variable real. Son los siguientes: Sobre funciones reales de variable real. Composición de funciones. Función inversa. Sucesiones de números reales. Sucesiones convergentes: límite de una sucesión. Sucesiones acotadas. Propiedades de las sucesiones convergentes. ...

Leer más »

Sucesiones de Cauchy. El teorema de complitud de \(R\)

Hemos dedicado varios artículos a hablar de sucesiones de números reales y de la noción de convergencia de una sucesión de números reales. De hecho, hemos visto ejemplos en los que se demostraba, haciendo uso de la definición, que una sucesión era convergente hacia cierto límite. También hemos demostrado que toda sucesión monótona y acotada es convergente, pero salvo en ...

Leer más »

Más sobre límite de sucesiones. Sucesiones parciales. Sucesiones monótonas

En un artículo anterior habíamos hablado de las sucesiones de números reales y del concepto de límite de una sucesión. También, en otro artículo, estuvimos viendo el concepto de sucesión acotada y algunas propiedades de las sucesiones convergentes. En este artículo vamos a completar nuestro estudio de las sucesiones. Diremos lo que es una sucesión parcial de una sucesión, definiremos ...

Leer más »

Descubriendo el número \(e\)

Antes de leer este artículo, en el que vamos a demostrar la existencia de un número irracional como límite de una determinada sucesión (el número \(e\)), se recomienda hacer una lectura atenta de este otro: “Sucesiones de números reales. Sucesiones convergentes: límite de una sucesión”. Proposición Consideremos la sucesión \(\{x_n\}\) de números reales definida por: \[x_n=1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\,,\,\forall\,n\in\mathbb{N}\] a)  \(\{x_n\}\) es convergente ...

Leer más »