Archivo de Etiquetas: integrales

La regla de Barrow

Dada una función continua en un intervalo \([a,\,b]\), podemos calcular \(\int_a^b f(x)dx\) de una manera mucho más rápida y eficiente a cómo se ha hecho en uno de los ejemplos del artículo anterior, en el que directamente se había aplicado ...

Leer más »

Integral definida

Consideremos una función \(y=f(x)\) continua en un intervalo \([a,\,b]\). Hagamos una partición de este intervalo por los puntos \(t_0,\,t_1,\,t_2,\,\ldots,\,t_{n-1},\,t_n\). Supongamos también que esta partición cumple que \(a=t_0<t_1<t_2<\ldots<t_{n-1}<t_n=b\). Consideremos los rectángulos cuyas bases son los intervalos parciales \([t_i,\,t_{i+1}]\) y cuyas alturas ...

Leer más »

Una integral racional

Vamos a calcular una primitiva de la función \(f(x)=\dfrac{1}{x^2-a^2}\) donde \(a\) es un número real cualquiera distinto de cero. Es decir, se trata de calcular la integral indefinida \(\displaystyle\int{\frac{1}{x^2-a^2}dx}\). Para ello vamos a descomponer en dos fracciones simples la fracción ...

Leer más »