Archivo de Etiquetas: integral indefinida

Una integral racional más elaborada

En este artículo vamos a calcular una primitiva de la función \(\displaystyle f(x)=\frac{x^3-1}{x^3+1}\). Es decir, calcularemos la siguiente integral indefinida: \[\int\frac{x^3-1}{x^3+1}\,dx\] Empecemos por descomponer la integral en otras dos: \[\int\frac{x^3-1}{x^3+1}\,dx= \int\frac{x^3+1-2}{x^3+1}\,dx= \int\left(\frac{x^3+1}{x^3+1}-\frac{2}{x^3+1}\right)\,dx=\] \[\int1\,dx-\int\frac{2}{x^3+1}\,dx=x-2\int\frac{1}{x^3+1}\,dx\] Ahora vamos a dedicar nuestro esfuerzo a ...

Leer más »

Una integral de apariencia «inocente»

Se trata de calcular la primitiva de la función \(\dfrac{1}{\text{sen}\,x}\), o lo que es lo mismo, la siguiente integral indefinida: \[\int \frac{1}{\text{sen}\,x}\,dx \] Primer método Haremos uso del cambio de variable \(\text{sen}\,x=t\). De aquí, derivando obtenemos: \[\cos x\,dx=dt\Rightarrow dx=\frac{dt}{\cos x}=\frac{dt}{\sqrt{1-t^2}}\] ...

Leer más »

Una integral racional

Vamos a calcular una primitiva de la función \(f(x)=\dfrac{1}{x^2-a^2}\) donde \(a\) es un número real cualquiera distinto de cero. Es decir, se trata de calcular la integral indefinida \(\displaystyle\int{\frac{1}{x^2-a^2}dx}\). Para ello vamos a descomponer en dos fracciones simples la fracción ...

Leer más »