Archivo de Etiquetas: geometría plana

Circunferencias tangentes

Tenemos dos circunferencias con radios \(a\) y \(b\), respectivamente, que son tangentes a la misma línea recta, así como una a la otra (véase la figura de más abajo). Los puntos donde las circunferencias tocan a la línea recta son \(D\) y ...

Leer más »

La plaza cuadrangular

Yo tuve un terreno con la forma exacta de un cuadrado. Vendí la cuarta parte del mismo, y esa cuarta parte tenía también la forma de un cuadrado (en la imagen, el cuadrado que vendí, en color gris). La parte ...

Leer más »

El árbelos

Leyendo algunos textos de matemáticas en busca de problemas para poner a mis alumnos de secundaria y de bachillerato, me topé con una figura geométrica que ya estaba lejana en mi memoria, pero que me encantó reencontrarme con ella: el ...

Leer más »

Lugares geométricos

Lugar geométrico es un conjunto de puntos que cumplen una propiedad determinada, de un modo integrante y excluyente. Integrante significa que todos los puntos que la cumplen pertenecen al lugar geométrico. Excluyente, que todos los puntos que no la cumplen ...

Leer más »

Cambio de sistema de referencia ortonormal

Traslación de ejes Consideremos las referencias ortonormales \(R_1=\{O\,;\,\{\mathbf{i},\mathbf{j}\}\}\)  y \(R_2=\{O’\,;\,\{\mathbf{i},\mathbf{j}\}\}\) que aparecen en la figura 12. Obsérvese que la segunda referencia, \(R_2\), tiene los ejes paralelos a los de la primera, \(R_1\). Supongamos que las coordenadas del nuevo origen, respecto de la ...

Leer más »

Área del triángulo

Trabajaremos en el triángulo de la figura 11. En él, la ecuación de la recta \(r\) es \[r\equiv\frac{x-c_1}{b_1-c_1}=\frac{y-c_2}{b_2-c_2}\Leftrightarrow(b_2-c_2)x+(b_1-c_1)y+(b_1c_2-c_1b_2)=0\] El área \(S\) del triángulo \(ABC\) es \[S=\frac{1}{2}\cdot|\overrightarrow{CB}|\cdot|\overrightarrow{AH}|\] Pero \[|\overrightarrow{CB}|=\sqrt{(b_1-c_1)^2+(b_2-c_2)^2}\] \[|\overrightarrow{AH}|=\frac{|(b_2-c_2)a_1+(c_1-b_1)a_2+b_1c_2-c_1b_2|}{\sqrt{(b_1-c_1)^2+(b_2-c_2)^2}}\] Obsérvese que para hallar \(AH\) se ha utilizado la fórmula de ...

Leer más »

Distancia de un punto a una recta

La distancia de un punto \(P(p_1,p_2)\) a una recta \(r\equiv Ax+By+C=0\) es la longitud del segmento de perpendicular a la recta, trazada por el punto \(P\), comprendido entre éste y aquella. En la figura 10, \(d(P,r)=d(P,M)\). Para calcularla podemos hallar ...

Leer más »