Archivo de Etiquetas: ejercicios de números complejos

Radicación de números complejos

Decir que la raíz de índice \(n\) del número complejo \(r_{\alpha}\) es el número complejo \(R_{\beta}\) es lo mismo que decir que la potencia de exponente \(n\) de \(R_{\beta}\) es igual a \(r_{\alpha}\). Simbólicamente: \[\sqrt[n]{r_{\alpha}}=R_{\beta}\Leftrightarrow \left(R_{\beta}\right)^n=r_{\alpha}\] Entonces, por la potenciación de complejos ...

Leer más »

Potenciación de números complejos en forma polar. Fórmula de Moivre

Sea el número complejo \(z=r\_{\alpha}\), el cual deseamos elevarlo a la potencia de exponente \(n\). \[z^n=(r_{\alpha})^n=r_{\alpha}\cdot r_{\alpha}\cdot\ldots\cdot\,(\text{n veces})\,\cdot\ldots\cdot r_{\alpha}=(r^n)_{\alpha+\alpha+\ldots+\,(\text{n veces})\,+\ldots+\alpha}\] Es decir, la potencia de un número complejo en forma polar se calcula del siguiente modo: \[(r_{\alpha})^n=(r^n)_{n\alpha}\] Si los dos miembros ...

Leer más »

Producto y cociente de números complejos en forma polar

Producto de números complejos en forma polar En la multiplicación de complejos que realizaremos a continuación, tendremos en cuenta que \(i^2=-1\). También se han de recordar, de la parte de trigonometría, los desarrollos de \(\text{cos}\,(\alpha+\beta)\) y \(\text{sen}\,(\alpha+\beta)\). \[\text{cos}\,(\alpha+\beta)=\text{cos}\,\alpha\cdot\text{cos}\,\beta-\text{sen}\,\alpha\cdot\text{sen}\,\beta\] \[\text{sen}\,(\alpha+\beta)=\text{sen}\,\alpha\cdot\text{cos}\,\beta+\text{cos}\,\alpha\cdot\text{sen}\,\beta\] Supongamos pues ...

Leer más »