Home » Archivo de Etiquetas: ejercicios de matemáticas

Archivo de Etiquetas: ejercicios de matemáticas

El Teorema de Tales

Enunciado del Teorema de Tales El teorema de Tales dice que si dos rectas cualesquiera se cortan por una serie de rectas paralelas, los lados o segmentos homólogos son proporcionales. \[\frac{\overline{AB}}{\overline{DE}}=\frac{\overline{BC}}{\overline{EF}}=\frac{\overline{AC}}{\overline{DF}}=\frac{\overline{AD}}{\overline{BE}}\] Triángulos semejantes y triángulos en posición de Tales Dos triángulos son semejantes si tienen sus ángulos iguales y sus lados son proporcionales. El teorema de Tales también se puede ...

Leer más »

La propiedad de compacidad para funciones continuas

En un artículo anterior hemos obtenido dos importantes resultados relacionados con la continuidad de una función en un intervalo: el teorema de los ceros de Bolzano y el teorema del valor intermedio. De hecho, este último afirma que la imagen por una función continua de un intervalo es otro intervalo. Sin embargo el intervalo imagen no tiene por qué ser ...

Leer más »

Progresiones geométricas

Definición Un par de ejemplos de progresiones geométricas pueden ser los siguientes: Primer término \(2\) y razón \(2\): \(\{2,\,4,\,8,\,16,\,32,\,64,\,128,\ldots\}\) Primer término \(\dfrac{1}{2}\) y razón \(\dfrac{1}{2}\): \(\left\{\dfrac{1}{2},\,\dfrac{1}{4},\,\dfrac{1}{8},\,\dfrac{1}{16},\,\dfrac{1}{32},\,\dfrac{1}{64},\ldots\right\}\) Llamaremos términos de la progresión a cada uno de los números que la forman y los simbolizaremos mediante letras afectadas de subíndices: \[a_1,\,a_2,\,a_3,\,a_4,\ldots\] Con esta notación podemos definir una progresión geométrica como una sucesión ...

Leer más »