Archivo de Etiquetas: apuntes matemáticas

Sobre vectores y matrices. Independencia lineal. Rango de una matriz

Espacios vectoriales Llamaremos \(\mathbb{R}^2\) al conjunto de todos los pares ordenados de la forma \((a_1,a_2)\) tal que \(a_1,a_2\in\mathbb{R}\). Es decir: \[\mathbb{R}^2=\{(a_1,a_2):a_1,a_2\in\mathbb{R}\}\] De la misma forma: \[\mathbb{R}^3=\{(a_1,a_2,a_3):a_1,a_2,a_3\in\mathbb{R}\}\] \[\mathbb{R}^4=\{(a_1,a_2,a_3,a_4):a_1,a_2,a_3,a_4\in\mathbb{R}\}\] Y, en general: \[\mathbb{R}^n=\{(a_1,a_2,\ldots,a_n):a_1,a_2,\ldots,a_n\in\mathbb{R}\}\] Si vemos los elementos de \(\mathbb{R}^n\) como matrices fila ...

Leer más »

La hipérbola

Definición A esa constante se la suele llamar \(2a\). La hipérbola es también una curva con abundantes aplicaciones. Un ejemplo bastante conocido es la relación entre la presión y el volumen de un gas ideal a temperatura constante, que viene ...

Leer más »

La circunferencia

Definición La distancia constante que separa cualquier punto de la circunferencia del centro es el radio \(r\). Ecuación general Consideramos en el plano un sistema de referencia ortonormal \(\{O\,;\,\{\textbf{i},\,\textbf{j}\}\}\) (obsérvese la figura siguiente). Si \(C(a\,,\,b)\) es el centro de la ...

Leer más »