Home » Archivo de Etiquetas: análisis de funciones

Archivo de Etiquetas: análisis de funciones

Funciones continuas e inyectivas

Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis adicional de que la función es inyectiva vamos a ver enseguida que el máximo y el mínimo se alcanzan en los extremos del intervalo, pero esto ...

Leer más »

Cálculo de áreas de recintos planos. Volumen de un cuerpo de revolución

En este artículo damos por hecho que se saben integrar funciones elementales utilizando los conocidos métodos de integración. Utilizaremos además la conocida regla de Barrow, según la cual si \(F(x)\) es una primitiva de \(f(x)\), y \(f(x)\) es continua en un intervalo cerrado \([a\ ,\ b]\), entonces: \[\int_a^b f(x)\, dx=F(b)-F(a)\] Cálculo de áreas de recintos planos Si una función \(y=f(x)\) ...

Leer más »