Una superficie cónica está engendrada por el giro de una recta \(g\) (llamada generatriz) alrededor de otra recta \(e\) (llamada eje) con la cual se corta en un punto \(V\) (vértice). La podemos ver representada en la siguiente figura.
Si a una superficie cónica la cortamos por un plano que no pasa por el vértice, la intersección que resulta es una curva que recibe el nombre de cónica.
Pueden presentarse tres casos dependiendo de cómo sean los ángulos \(\alpha\) (formado por la generatriz y el eje) y \(\beta\) (formado por el plano y el eje). En las siguientes figuras, de izquierda a derecha y de arriba hacia abajo, se representan respectivamente la elipse (cuando \(\alpha<\beta\)), la parábola (cuando \(\alpha=\beta\)), y la hipérbola (cuando \(\alpha>\beta\)).
Una circunferencia es un caso particular de elipse que se obtiene cuando el ángulo \(\beta=90^{\text{o}}\)(véase la figura siguiente).
Estas curvas que fueron ampliamente conocidas y estudiadas, utilizando métodos puramente geométricos, por los matemáticos griegos de la antigüedad, las estudiaremos en los siguientes artículos como ya hicimos con las rectas en el curso de geometría métrica plana.