Ejercicio 1
Sea la siguiente función
\[f(x)=\begin{cases}\displaystyle\frac{x+3a}{10}&\text{si}&x<0\\\displaystyle\frac{2x+1}{7x+5}&\text{si}& 0\leq x\leq1\\\displaystyle\frac{\sqrt{x+3}-2}{x-1}&\text{si}&x>1\end{cases}\]
Hallar el valor de \(a\) para que \(f\) sea continua en \(x=0\). Estudiar la continuidad de \(f\) en \(x=1\).
La solución aquí
La solución aquí
\[\begin{cases}\displaystyle\lim_{x\rightarrow0^-}f(x)=\lim_{x\rightarrow0^-}\frac{x+3a}{10}=\frac{3a}{10}\\\displaystyle\lim_{x\rightarrow0^+}f(x)=\lim_{x\rightarrow0^+}\frac{2x+1}{7x+5}=\frac{1}{5}=f(0)\end{cases}\]
Entonces, para que \(f\) sea continua en \(x=0\) debe de ocurrir que
\[\lim_{x\rightarrow0^-}f(x)=\lim_{x\rightarrow0^+}f(x)=f(0)\]
Por tanto:
\[\frac{3a}{10}=\frac{1}{5}\Rightarrow a=\frac{10}{15}=\frac{2}{3}\]
Estudiemos ahora la continudad de la función en \(x=1\).
Por un lado:
\[\lim_{x\rightarrow1^-}f(x)=\lim_{x\rightarrow1^-}\frac{2x+1}{7x+5}=\frac{3}{12}=\frac{1}{4}\]
Por otro lado:
\[\lim_{x\rightarrow1^+}f(x)=\lim_{x\rightarrow1^+}\frac{\sqrt{x+3}-2}{x-1}=\left[\frac{0}{0}\right]=\]
\[=\lim_{x\rightarrow1^+}\frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)}=\]
\[=\lim_{x\rightarrow1^+}\frac{x+3-4}{(x-1)(\sqrt{x+3}+2)}=\lim_{x\rightarrow1^+}\frac{x-1}{(x-1)(\sqrt{x+3}+2)}=\]
\[=\lim_{x\rightarrow1^+}\frac{1}{\sqrt{x+3}+2}=\frac{1}{4}\]
Como los límites laterales son iguales, entonces existe el límite: \(\displaystyle\lim{x\rightarrow1}f(x)=\dfrac{1}{4}\). Además \(f(1)=\dfrac{1}{4}\). Por tanto \(\displaystyle\lim_{x\rightarrow1}f(x)=f(1)=\dfrac{1}{4}\), y \(f\) es continua en \(x=1\).
Ejercicio 2
Calcular los siguientes límites:
a) \(\displaystyle\lim_{x\rightarrow-\infty}\dfrac{-12x^2+7x+1}{(2x+1)(1-4x)}\) ; b) \(\displaystyle\lim_{x\rightarrow0^-}\left(\dfrac{2}{x}-\dfrac{3}{x+1}\right)\) ;
c) \(\displaystyle\lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)\) ; d) \(\displaystyle\lim_{x\rightarrow1}\dfrac{\sqrt{x}-\displaystyle\frac{1}{x}}{x-1}\)
La solución aquí
La solución aquí
a) \(\displaystyle\lim_{x\rightarrow-\infty}\dfrac{-12x^2+7x+1}{(2x+1)(1-4x)}=\lim_{x\rightarrow-\infty}\dfrac{-12x^2+7x+1}{-8x^2-2x-1)}=\dfrac{-12}{-8}=\dfrac{1}{4}\)
b) \(\displaystyle\lim_{x\rightarrow0^-}\left(\dfrac{2}{x}-\dfrac{3}{x+1}\right)=\lim_{x\rightarrow0^-}\dfrac{2(x+1)-3x}{x(x+1)}=\left[\dfrac{2}{0}\right]=-\infty\)
Pero es más fácil hacerlo así: \(\displaystyle\lim_{x\rightarrow0^-}\left(\dfrac{2}{x}-\dfrac{3}{x+1}\right)=-\infty-3=-\infty\)
c) \(\displaystyle\lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)=\left[\infty-\infty\right]=\)
\(\displaystyle=\lim_{x\rightarrow+\infty}\dfrac{\left(\sqrt{x^2+x}-\sqrt{x^2-x}\right)\left(\sqrt{x^2+x}+\sqrt{x^2-x}\right)}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\)
\(\displaystyle=\lim_{x\rightarrow+\infty}\dfrac{x^2+x-x^2+x}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\lim_{x\rightarrow+\infty}\dfrac{2x}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\)
\(\displaystyle=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)
d) \(\displaystyle\lim_{x\rightarrow1}\dfrac{\sqrt{x}-\displaystyle\frac{1}{x}}{x-1}=\left[\dfrac{0}{0}\right]=\lim_{x\rightarrow1}\dfrac{x\sqrt{x}-1}{x(x-1)}=\lim_{x\rightarrow1}\dfrac{(x\sqrt{x}-1)(x\sqrt{x}+1)}{x(x-1)(x\sqrt{x}+1)}=\)
\(=\displaystyle\lim_{x\rightarrow1}\dfrac{x^3-1}{x(x-1)(x\sqrt{x}+1)}=\lim_{x\rightarrow1}\dfrac{(x-1)(x^2+x+1)}{x(x-1)(x\sqrt{x}+1)}=\)
\(=\displaystyle\lim_{x\rightarrow1}\dfrac{x^2+x+1}{x(x\sqrt{x}+1)}=\dfrac{3}{2}\)
Ejercicio 3
De la función siguiente calcular el dominio, los puntos de corte con los ejes y las asíntotas. Hacer una representación gráfica aproximada de la misma.
\[f(x)=\frac{x^3-27}{x^2-2x-15}\]
La solución aquí
La solución aquí
Las soluciones de \(x^2-2x-15=0\) son \(x=-3\) y \(x=5\). Por tanto \(\text{Dom}\,f=\mathbb{R}-\{-3\,,\,5\}\).
\(\dfrac{x^3-27}{x^2-2x-15}=0\Rightarrow x^3-27=0\Rightarrow x^3=27\Rightarrow x=\sqrt[3]{27}=3\). Por tanto el punto de corte con el eje \(X\) es \((3\,,\,0)\).
\(\dfrac{0^3-27}{0^2-2\cdot0-15}=\dfrac{-27}{-15}=\dfrac{9}{5}\), lo que quiere decir que el punto de corte con el eje \(Y\) es \(\left(0\,,\,\dfrac{9}{5}\right)\).
\(\displaystyle\lim_{x\rightarrow-3}\dfrac{x^3-27}{x^2-2x-15}=\left[\dfrac{-54}{0}\right]=\begin{cases}-\infty&si&x\rightarrow-3^-\\+\infty&si&x\rightarrow-3^+\end{cases}\)
\(\displaystyle\lim_{x\rightarrow5}\dfrac{x^3-27}{x^2-2x-15}=\left[\dfrac{98}{0}\right]=\begin{cases}-\infty&si&x\rightarrow5^-\\+\infty&si&x\rightarrow5^+\end{cases}\)
De lo anterior se deduce que \(x=-3\) y \(x=5\) son asíntotas verticales de la función.
\(\displaystyle\lim_{x\rightarrow\infty}\dfrac{x^3-27}{x^2-2x-15}=\begin{cases}+\infty&si&x\rightarrow+\infty\\-\infty&si&x\rightarrow-\infty\end{cases}\), lo que quiere decir que \(f\) no tiene asíntotas horizontales.
Al dividir \(x^3-27\) entre \(x^2-2x-15\) se obtiene de cociente \(x+2\), lo que significa que \(y=x+2\) es una asíntota oblicua de la función.
Ejercicio 4
Hallar, usando la definición, la derivada de la función \(f(x)=\dfrac{x-3x^2}{1-2x^2}\) en el punto \(x=1\).
La solución aquí
La solución aquí
\(\displaystyle\lim_{x\rightarrow1}\dfrac{f(x)-f(1)}{x-1}=\lim_{x\rightarrow1}\dfrac{\displaystyle\frac{x-3x^2}{1-2x^2}-2}{x-2}=\lim_{x\rightarrow1}\dfrac{\displaystyle\frac{x-3x^2-2(1-2x^2)}{1-2x^2}}{x-1}=\)
\(=\displaystyle\lim_{x\rightarrow1}\dfrac{x-3x^2-2+4x^2}{(x-1)(1-2x^2)}=\lim_{x\rightarrow1}\dfrac{x^2+x-2}{(x-1)(1-2x^2)}=\)
\(=\displaystyle\lim_{x\rightarrow1}\dfrac{(x-1)(x+2)}{(x-1)(1-2x^2)}=\lim_{x\rightarrow1}\dfrac{x+2}{1-2x^2}=\dfrac{3}{-1}=-3\)
Entonces \(f'(1)=-3\).
Ejercicio 5
Hallar la derivada de las siguientes funciones y simplificar el resultado en la medida de lo posible.
a) \(f(x)=\dfrac{5x^2+2x^3-10x+1}{5}\) ; b) \(f(x)=\dfrac{x-3x^2}{1-2x^2}\) ;
c) \(f(x)=x^2\cdot(\sqrt{x}-1)\) ; d) \(f(x)=\left(\dfrac{2}{x}-\dfrac{1}{x^3}\right)\cdot x^2\)
La solución aquí
La solución aquí
a) \(f(x)=\dfrac{5x^2+2x^3-10x+1}{5}=\dfrac{1}{5}(5x^2+2x-10x+1)\).
Entonces \(f'(x)=\dfrac{1}{5}(10x+6x^2-10)=2x+\dfrac{6}{5}x^2-2\)
Otra forma (más enrevesada, utilizando la regla de derivación de un cociente):
\(\displaystyle f'(x)=\dfrac{(10x+6x^2-10)\cdot5-(5x^2+2x^3-10x+1)\cdot0}{5^2}=\)
\(\displaystyle=\dfrac{50x+30x^2-50}{25}=2x+\dfrac{6}{5}x^2-2\)
b) Usando otra vez la regla de derivación de un cociente tenemos:
\(f'(x)=\dfrac{(1-6x)(1-2x^2)-(x-3x^2)(-4x)}{(1-2x^2)^2}=\)
\(=\dfrac{1-2x^2-6x+12x^2+4x^2-12x^3}{(1-2x^2)^2}=\dfrac{2x^2-6x+1}{(1-2x^2)^2}\)
c) \(f'(x)=2x(\sqrt{x}-1)+x^2\dfrac{1}{2\sqrt{x}}=2x\sqrt{x}-2x+\dfrac{x^2}{2\sqrt{x}}=\)
\(=\dfrac{4x^2-4x\sqrt{x}+x^2}{2\sqrt{x}}=\dfrac{5x^2-4x\sqrt{x}}{2\sqrt{x}}=\dfrac{5x^2\sqrt{x}-4x^2}{2x}=\dfrac{5x\sqrt{x}-4x}{2}\)
Otra forma, expresando previamente la función de otra manera equivalente.
\(f(x)=x^2\cdot(\sqrt{x}-1)=x^2\sqrt{x}-x^2=x^2\cdot x^{1/2}-x^2=x^{5/2}-x^2\Rightarrow\)
\(\Rightarrow f'(x)=\dfrac{5}{2}x^{3/2}-2x=\dfrac{5}{2}\sqrt{x^3}-2x=\dfrac{5x\sqrt{x}}{2}-2x=\dfrac{5x\sqrt{x}-4x}{2}\)
d) \(f(x)=\left(\dfrac{2}{x}-\dfrac{1}{x^3}\right)\cdot x^2=\dfrac{2x^2}{x}-\dfrac{x^2}{x^3}=2x-\dfrac{1}{x}\Rightarrow\)
\(\Rightarrow f'(x)=2-\dfrac{-1}{x^2}=\dfrac{2x^2+1}{x^2}\)
Hagámoslo de otra manera:
\(f(x)=\left(\dfrac{2}{x}-\dfrac{1}{x^3}\right)\cdot x^2=\dfrac{2x^2-1}{x^3}\cdot x^2=\dfrac{(2x^2-1)x^2}{x^3}=\dfrac{2x^2-1}{x}\Rightarrow\)
\(\Rightarrow f'(x)=\dfrac{4x\cdot x-(2x^2-1)\cdot1}{x^2}=\dfrac{4x^2-2x^2+1}{x^2}=\dfrac{2x^2+1}{x^2}\)