Aproximación de la raíz de dos por su fracción continua.

Fracciones continuas y raíces cuadradas

Rafael Bombelli, matemático italiano nacido en Bolonia, ideó un procedimiento de aproximación de raíces cuadradas expuesto en el libro I de su obra L’Álgebra parte maggiore dell’aritmetica divisa in tre libri (1572).

Utilizando el simbolismo moderno, el procedimiento de Bombelli se puede esquematizar del modo siguiente:

\[\sqrt{n}=\sqrt{a^2+b}=a+\frac{1}{x}\Rightarrow\frac{1}{x}=\sqrt{a^2+b}-a\Rightarrow\]

\[\Rightarrow\frac{1}{x}=\frac{(\sqrt{a^2+b}-a)(\sqrt{a^2+b}+a)}{\sqrt{a^2+b}+a}\Rightarrow\frac{1}{x}=\frac{b}{\sqrt{a^2+b}+a}\Rightarrow\]

\[\Rightarrow\frac{1}{x}=\frac{b}{\displaystyle\left(a+\frac{1}{x}\right)+a}\Rightarrow\frac{1}{x}=\frac{b}{\displaystyle 2a+\frac{1}{x}}\]

Por tanto:

\[\sqrt{n}=a+\frac{1}{x}=a+\frac{b}{\displaystyle 2a+\frac{1}{x}}=a+\frac{b}{\displaystyle 2a+\frac{b}{\displaystyle 2a+\frac{1}{x}}}=\]

\[=a+\frac{b}{\displaystyle 2a+\frac{b}{\displaystyle2a+\frac{b}{\displaystyle2a+\frac{b}{\displaystyle2a+\ldots}}}}\]

Veamos un par de ejemplos.

Si \(n=2\), entonces:

\[\sqrt{2}=\sqrt{1^2+1}=1+\frac{1}{2+\displaystyle\frac{1}{2+\displaystyle\frac{1}{2+\displaystyle\frac{1}{2+\ldots}}}}\]

Si \(n=13\), entonces:

\[\sqrt{13}=\sqrt{3^2+4}=3+\frac{4}{6+\displaystyle\frac{4}{6+\displaystyle\frac{4}{6+\displaystyle\frac{4}{6+\ldots}}}}\]

Referencia bibliográfica

MEAVILLA, V. (2010) La sinfonía de Pitágoras. Barcelona: Editorial Almuzara S.L.

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

x

Check Also

¿Te atreves? Un problema de matemáticas (5)

Este uno de esos típicos problemas de matemáticas que suelen aparecer en los últimos cursos ...

El algoritmo de Arquímedes para el cálculo del número pi

Este artículo tiene su origen en un mensaje que por Twitter me manda @JavierGacimart1, en ...

A %d blogueros les gusta esto: