Tenemos dos circunferencias con radios \(a\) y \(b\), respectivamente, que son tangentes a la misma línea recta, así como una a la otra (véase la figura de más abajo). Los puntos donde las circunferencias tocan a la línea recta son \(D\) y \(E\). ¿Cuál es la longitud del segmento \(\overline{DE}\)?
La solución aquí
La solución aquí
El único triángulo que se ve en la figura es claramente rectángulo. Su hipotenusa es igual, también claramente, a la suma de los radios de las circunferencias. Aplicando el teorema de Pitágoras:
\[(a+b)^2=\overline{DE}^2+(b-a)^2\Rightarrow a^2+2ab+b^2=\overline{DE}^2+b^2-2ab+a^2\]
Y de aquí:
\[\overline{DE}^2=4ab\]
Por tanto:
\[\overline{DE}=\sqrt{4ab}\Rightarrow\overline{DE}=2\sqrt{ab}\]