Matematicas ESO

Artículos con teoría y ejercicios con nivel para la Educación Secundaria Obligatoria (ESO).

Eliminando denominadores de una ecuación

En las matemáticas de 4º de Educación Secundaria Obligatoria se suele proponer la resolución de ecuaciones de primer grado como la siguiente: \[\frac{3x+7}{24}-\frac{1-4x}{6}=-4-x-\frac{2x-5}{3}\] Para resolverla hay que eliminar los denominadores. Para ello se reducen todos los términos a común denominador, ...

Leer más »

Números aproximados. Error absoluto y relativo

«La física es demasiado importante para ser dejada a los físicos.» David Hilbert Los números reales reflejan con absoluta precisión los resultados teóricos. Así por ejemplo, la longitud de una circunferencia de radio  \(\displaystyle \frac{\sqrt{5}}{3}\) es, exactamente, \(\displaystyle \frac{2\pi\sqrt{5}}{3}\), número ...

Leer más »

Notación científica y cifras significativas

«Cuando se olvide a Esquilo, Arquímedes será todavía recordado, porque los lenguajes mueren, pero las ideas matemáticas no. Puede que inmortalidad sea una palabra tonta, pero probablemente un matemático tiene la mejor oportunidad de alcanzar lo que sea que signifique.» ...

Leer más »

Trigonometría básica

En esta presentación se introducen los conceptos básicos de trigonometría a un nivel de la materia Matemáticas I, de 1º de Bachillerato, aunque los primeros conceptos también son adecuados para 4º de ESO (Educación Secundaria Obligatoria). Los contenidos desarrollados son ...

Leer más »

El Teorema de Tales

Enunciado del Teorema de Tales El teorema de Tales dice que si dos rectas cualesquiera se cortan por una serie de rectas paralelas, los lados o segmentos homólogos son proporcionales. \[\frac{\overline{AB}}{\overline{DE}}=\frac{\overline{BC}}{\overline{EF}}=\frac{\overline{AC}}{\overline{DF}}\] Triángulos semejantes y triángulos en posición de Tales Dos ...

Leer más »

ecuaciones, ecuaciones, ecuaciones

En matemáticas, saber resolver ecuaciones es fundamental. En las matemáticas de bachillerato una de las cosas que hacemos a principio de curso es repasar todos los tipos de ecuaciones que hemos aprendido durante la educación secundaria obligatoria. Incluso se aprenden ...

Leer más »

Expresiones infinitas y la razón áurea

Supongamos que nos piden hallar un valor de \(x\) igual al de las siguientes expresiones infinitas: \[x=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}}\quad(1)\] \[x=1+\frac{1}{\displaystyle1+\frac{1}{\displaystyle 1+\frac{1}{1+\displaystyle\frac{1}{1+\ldots}}}}\quad(2)\] Dicho de otra manera, queremos otra forma de escribir el valor de \(x\), pero no como una expresión infinita. En el ...

Leer más »