Home » Selectividad Matemáticas II

Selectividad Matemáticas II

Acceso Universidad Matemáticas II. Integrales y áreas (6)

Este ejercicio de Matemáticas II fue propuesto en julio de 2019 por la Universidad de Castilla-La Mancha en la Evaluación para el Acceso a la Universidad (propuesta A). Enunciado a) Calcula razonadamente el área del recinto cerrado limitado por las gráficas de las funciones \(f(x)=16-x^2\) y \(g(x)=(x+2)^2-4\). b) Encuentra razonadamente la ecuación de la recta tangente a la gráfica de ...

Leer más »

Acceso Universidad Matemáticas II – Geometría (3)

Este ejercicio de Matemáticas II fue propuesto en junio de 2019 por la Universidad de Valencia en las pruebas de acceso a la universidad (opción A). Enunciado Se dan la matriz \(\displaystyle A=\left(\begin{array}{rcc}1&0&a\\-2&a+1&2\\-3&a-1&a\end{array}\right)\) que depende del parámetro real \(a\), y una matriz cuadrada \(B\) de orden \(3\) tal que \(B^{\,2}=\dfrac{1}{3}I-2B\), siendo \(I\) la matriz identidad de orden \(3\). Obtener razonadamente, ...

Leer más »

Acceso Universidad Matemáticas II – Aplicaciones de las derivadas (8)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2014 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta B). Enunciado Para la función \(f(x)=\sqrt{x^2+x+1}\) a) Estudia sus intervalos de crecimiento y decrecimiento, así como sus extremos relativos. b) Estudia si tiene asíntota oblicua cuando \(x\rightarrow+\infty\)

Leer más »

Acceso Universidad Matemáticas II – Aplicaciones de las derivadas (7)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2013 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta B). Enunciado a) Interpretación geométrica de la derivada de una función en un punto. b) Halla el punto de la gráfica de la función \(f(x)=x^3+3x^2+1\) donde la recta tangente tiene pendiente ...

Leer más »

Acceso Universidad Matemáticas II – Continuidad y aplicaciones de las derivadas (1)

Este ejercicio de Matemáticas II fue propuesto en julio de 2019 por la Universidad de Castilla-La Mancha en las Pruebas de Evaluación para el Acceso a la Universidad (propuesta B). Enunciado a) Demuestra que la ecuación \(\text{sen}\,x-2x+1=0\) tiene al menos una solución real en el intervalo \([0,\,\pi]\). b) Calcula razonadamente el número exacto de soluciones de la ecuación anterior cuando ...

Leer más »

Acceso Universidad Matemáticas II – Matrices, determinantes y sistemas (3)

Este ejercicio de Matemáticas II fue propuesto en 2012 (reserva 2) por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Enunciado Dada la matriz \[A = \left( {\begin{array}{cccc}a&0&0&-b\\0&a&b&0\\0&-b&a&0\\b&0&0&a\end{array}} \right)\ ;\ a,b\in\mathbb{R}\ ,\ a\neq0\,,\,b\neq0 \]a) Calcula \(A\cdot A^T\), donde \(A^T\) es la matriz traspuesta de \(A\).b) Razona que siempre existe la ...

Leer más »

Acceso Universidad Matemáticas II – Aplicaciones de las derivadas (5)

Este ejercicio de Matemáticas II fue propuesto en julio de 2018 por la Universidad de Castilla-La Mancha en las Pruebas de Evaluación para Acceso a la Universidad (propuesta A). Enunciado Después de la administración por vía oral de un fármaco, la concentración de este en sangre sigue el modelo: \(C(t)=at^2e^{-bt}\), donde \(t\in[0,+\infty)\) es el tiempo en horas transcurridos desde la ...

Leer más »