Últimas noticias
Home » Análisis

Análisis

Una integral con radicales

Calcular la siguiente integral: \[\int{\frac{{\sqrt x dx}}{{\sqrt[3]{x} – 1}}}\] Vamos a realizar el cambio de variable \(x=t^6\). \[\int {\frac{{\sqrt x dx}}{{\sqrt[3]{x} – 1}} = \left[ {x = {t^6} \Rightarrow dx = 6{t^5}dt} \right]} =\] \[= \int {\frac{{\sqrt {{t^6}} 6{t^5}dt}}{{\sqrt[3]{{{t^6}}} – 1}} = } \int {\frac{{{t^3}6{t^5}dt}}{{{t^2} – 1}} = } \int {\frac{{6{t^8}dt}}{{{t^2} – 1}} = } 6\int {\frac{{{t^8}}}{{{t^2} – 1}}dt = ...

Leer más »

Integración de funciones trigonométricas

Sea \(\int\text{R}\,(\text{sen}\,x,\,\cos x,\,\text{tg}\,x)\) una función racional de \(\text{sen}\,x\), \(\cos x\) y \( \text{tg}\,x\), es decir, una función en la que \(\text{sen}\,x\), \(\cos x\) y \( \text{tg}\,x\) aparecen ligados por sumas, restas, multiplicaciones y divisiones. Si queremos integrar esta función y no encontramos un procedimiento sencillo, podemos transformarla en una función racional de \(t\) teniendo en cuenta lo que se expone ...

Leer más »

Una integral de apariencia “inocente”

Se trata de calcular la primitiva de la función \(\dfrac{1}{\text{sen}\,x}\), o lo que es lo mismo, la siguiente integral indefinida: \[\int \frac{1}{\text{sen}\,x}\,dx \] Primer método Haremos uso del cambio de variable \(\text{sen}\,x=t\). De aquí, derivando obtenemos: \[\cos x\,dx=dt\Rightarrow dx=\frac{dt}{\cos x}=\frac{dt}{\sqrt{1-t^2}}\] En la última igualdad hemos usado la fórmula fundamental de la trigonometría: \[\text{sen}^2x+\cos^2x=1\Rightarrow\cos^2x=1-\text{sen}^2x\Rightarrow\cos^2 x=1-t^2\Rightarrow \cos x=\sqrt{1-t^2}\] De este modo: \[ ...

Leer más »

Completando cuadrados

La pregunta es: ¿cómo podemos completar un cuadrado para obtener cualquier polinomio de grado dos? Dicho de otra manera: si \(ax^2+bx+c\) es un polinomio de grado dos (con lo cual supondremos que \(a\neq0\)), ¿cómo hacer para expresarlo como un cuadrado completado? Es decir, ¿podremos conseguir la siguiente expresión? \[a{x^2} + bx + c = a\left( {{{\left( {x + m} \right)}^2} + {n^2}} ...

Leer más »

Continuidad de una función en un punto

Si \(f\) es una función real de variable real, y \(a\) es un número real perteneciente al dominio de la función \(f\) (\(a\in\text{Dom}\,f\)), sabemos que \((a,f(a))\) es un punto de la gráfica de \(f\). Intuitivamente, la función \(f\) es continua en este punto cuando al dibujar la gráfica de la misma, no tenemos que “levantar el lápiz del papel” al ...

Leer más »

Integrales indefinidas y cálculo de áreas

Uno de los problemas típicos que se proponen siempre en Selectividad, en la materia de Matemáticas II, son el cálculo de integrales indefinidas y el uso de las integrales para el cálculo de áreas. Os propongo un par de integrales indefinidas (racionales) y un par de problemas de cálculo de áreas. Como siempre, hay que pensarlos e intentar hacerlos antes ...

Leer más »

Aplicación de las progresiones geométricas a la cuadratura de hipérbolas infinitas

Consideremos la función \(y=\dfrac{1}{x^2}\), definida en el intervalo \([0,5\,,\,+\infty)\). Su gráfica es la siguiente: El área limitada por la curva anterior, el eje \(X\) y la recta \(x=\dfrac{1}{2}\) se puede ver representada en la figura dada a continuación. Con una suficiente formación en análisis matemático, se puede hallar el área anterior mediante el cálculo de la integral impropia \[\int_{1/2}^{\infty}\frac{1}{x^2}\,dx\] De ...

Leer más »

Cuadratura de un segmento de parábola

Una forma de acercarse al cálculo del área bajo una curva es calcular el área de la región \(R\) comprendida por la parábola \(y=x^2\), el eje de abscisas y la recta \(x=1\). Este problema, como veremos, es equivalente a la cuadratura de un segmento de parábola. En primer lugar, aproximaremos el área de la región \(R\) anterior mediante la suma ...

Leer más »

Funciones polinómicas

Una función polinómica, como su nombre indica, está definida mediante un polinomio, es decir: \[f(x)=a_nx^n+x_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\ldots+a_2x^2+a_1x^1+a_0\] Es fácil darse cuenta de que el dominio de una función polinómica es todo el conjunto \(\mathbb{R}\) de los números reales, ya que tiene sentido sustituir la variable \(x\) por cualquier número real para obtener su imagen \(f(x)\). O sea, si \(f\) es una función ...

Leer más »

Interpretando ecuaciones e inecuaciones matemáticas con desmos

En un examen de matemáticas de 1º de Bachillerato (Matemáticas I, modalidad de Ciencias y Tecnología) les propuse a mis alumnos, entre otras cosas, que resolvieran un par de ecuaciones, un sistema de ecuaciones no lineal, una inecuación con la incógnita en el denominador, y un sistema de inecuaciones. Si representamos cada una de ellas con una aplicación gráfica, en ...

Leer más »