En el siglo VIII, un monje benedictino inglés conocido con el nombre de Beda el Venerable planteó este problema.
Un testador a punto de morir deja dicho en su herencia: “Como mi mujer está próxima a dar a luz, otorgaré mi herencia en función del sexo de mi prole: si es niño le dejaré 2/3 de mi herencia, y a su madre 1/3; y si es niña, le dejaré 1/3 de mi herencia y a mi mujer 2/3”. El testador muere, y días más tarde su viuda da a luz a un par de mellizos de distinto sexo. ¿Cómo han de repartirse la herencia?
La solución aquí
La solución aquí
La razón entre las cantidades de hijo varón y madre es \(\dfrac{2/3}{1/3}=2\). La razón entre las cantidades de hija hembra y madre es \(\dfrac{1/3}{2/3}=\dfrac{1}{2}\). Las anteriores son las constantes de proporcionalidad hijo-madre, hija-madre. De la primera se deduce que el hijo recibe el doble que la madre, y de la segunda que la hija recibe la mitad de la madre.
De lo anterior se deduce que si la cantidad que recibe la madre es \(x\), la del hijo es \(2x\) y la de la hija es \(\dfrac{x}{2}\), cantidades que suman un total de \(3,5x\). Por tanto el reparto se realizará de la siguiente manera:
A la madre le corresponde \(x\) de \(3,5x\), es decir \(\dfrac{x}{3,5x}=\dfrac{2}{7}\) del total.
Al hijo le corresponde \(2x\) de \(3,5x\), es decir \(\dfrac{2x}{3,5x}=\dfrac{4}{7}\) del total.
A la hija le corresponde \(0,5x\) de \(3,5x\), es decir \(\dfrac{0,5x}{3,5x}=\dfrac{1}{7}\) del total.