Home » Análisis » Integrales indefinidas propuestas en Selectividad
Expresión de la integral indefinida de una función.

Integrales indefinidas propuestas en Selectividad

En los exámenes de Selectividad (PAEG) de Matemáticas II que la Universidad de Castilla-La Mancha ha propuesto durante estos últimos años, han aparecido, como es natural, muchos ejercicios de cálculo de integrales indefinidas. Para resolverlas, o bien la integral es inmediata, o bien se utilizan alguno de los métodos vistos durante el curso en Matemáticas II: sustitución o cambio de variable, integración por partes, integración de funciones racionales con raíces simples o múltiples en el denominador, etcétera. Al cálculo de integrales indefinidas también se le llama cálculo de primitivas. Si quieres repasar la teoría puedes estudiar o repasar estos apuntes sobre integral indefinida y métodos de integración.

Pues bien, volviendo a las integrales indefinidas propuestas en Selectividad te dejamos aquí una página Web con muchas de ellas y su solución final.

Integrales indefinidas propuestas en Selectividad

Sobre Pedro Castro Ortega

Profesor de Matemáticas en el IES "Fernando de Mena" de Socuéllamos (Ciudad Real, Castilla-La Mancha).

Comentar

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

*

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

x

Check Also

Acceso Universidad Matemáticas II – Integrales y áreas (2)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de ...

Acceso Universidad Matemáticas II – Integrales y áreas (1)

Este ejercicio de Matemáticas II fue propuesto en junio de 2014 por la Universidad de ...

Aplicación de las progresiones geométricas a la cuadratura de hipérbolas infinitas

Consideremos la función \(y=\dfrac{1}{x^2}\), definida en el intervalo \([0,5\,,\,+\infty)\). Su gráfica es la siguiente: El ...

Integrales indefinidas. Cálculo de primitivas (II)

En la entrada anterior sobre integrales indefinidas se obtuvieron las siguientes: \[\int{\cos^2x\,dx}=\frac{x+\text{sen}\,x\cos x}{2}+C\] \[\int{\text{sen}^2x\,dx}=\frac{x-\text{sen}\,x\cos x}{2}+C\] ...

A %d blogueros les gusta esto: