Últimas noticias
Home » Archivo de Etiquetas: recta

Archivo de Etiquetas: recta

La función lineal. Ecuación de la recta

Se dice que una función real de variable real es una función lineal si es de la forma \(f(x)=mx+n\) (indistintamente utilizaremos la escritura \(y=mx+n\)). Es decir, la ecuación de la función se corresponde con un polinomio de primer grado. La representación gráfica de una función lineal es siempre una recta. El coeficiente \(m\) recibe el nombre de pendiente de la recta ...

Leer más »

Sistemas de ecuaciones lineales dependientes de un parámetro

Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que dependan de un parámetro. Recordemos pues, en primer lugar, el enunciado del Teorema de Rouché-Frobenius. Teorema de Rouché-Frobenius Sea \[\left\{ \begin{array}{l} {a_{11}}{x_1} + {a_{12}}{x_2} + \,.\,.\,.\,.\,.\, + {a_{1n}}{x_n} = {b_1}\\ {a_{21}}{x_1} ...

Leer más »

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín

Una ecuación lineal es una ecuación polinómica de grado uno con una o varias incógnitas. Si la ecuación solamente tiene una incógnita la ecuación es de la forma \[ax+b=0\] donde \(a\) y \(b\) son números reales con \(a\neq0\) , y \(x\) es la incógnita. Como \(a\neq0\) , \(a\) tiene inverso, con lo que podemos despejar la incógnita con facilidad. \[ax ...

Leer más »

Ecuación punto-pendiente. Otras ecuaciones de la recta

Observemos la figura 5: En primer lugar vamos a hallar el vector director \(p=(p_1,p_2)\) de la recta \(r\) que venga dada en su forma general: \[r\equiv Ax+By+C=0\] En la figura se ha dibujado la recta \(r\) y otra paralela a ella, \(s\), que pasa por el origen de coordenadas. Por tanto la ecuación de s será de la forma: \[s\equiv Ax+By=0\] Tomemos ...

Leer más »

Repaso de la recta en el plano afín

Sobre la figura 1 recordamos las distintas formas de la recta en el plano afín. Dado un punto \(A(a,\,b)\) siempre podemos trazar una recta \(r\) que pase por \(A\) en una determinada dirección. Si llamamos \(\vec{e}\) a la dirección de la recta o vector director de la recta, podremos generar cualquier punto \(X(x,\,y)\) de la recta mediante la ecuación \[\overrightarrow{OX}=\overrightarrow{OA}+k\cdot\vec{e}\] ...

Leer más »