Home » Archivo de Etiquetas: progresión geométrica

Archivo de Etiquetas: progresión geométrica

Aplicación de las progresiones geométricas a la cuadratura de hipérbolas infinitas

Consideremos la función \(y=\dfrac{1}{x^2}\), definida en el intervalo \([0,5\,,\,+\infty)\). Su gráfica es la siguiente: El área limitada por la curva anterior, el eje \(X\) y la recta \(x=\dfrac{1}{2}\) se puede ver representada en la figura dada a continuación. Con una suficiente formación en análisis matemático, se puede hallar el área anterior mediante el cálculo de la integral impropia \[\int_{1/2}^{\infty}\frac{1}{x^2}\,dx\] De ...

Leer más »

Progresiones geométricas

Definición Un par de ejemplos de progresiones geométricas pueden ser los siguientes: Primer término \(2\) y razón \(2\): \(\{2,\,4,\,8,\,16,\,32,\,64,\,128,\ldots\}\) Primer término \(\dfrac{1}{2}\) y razón \(\dfrac{1}{2}\): \(\left\{\dfrac{1}{2},\,\dfrac{1}{4},\,\dfrac{1}{8},\,\dfrac{1}{16},\,\dfrac{1}{32},\,\dfrac{1}{64},\ldots\right\}\) Llamaremos términos de la progresión a cada uno de los números que la forman y los simbolizaremos mediante letras afectadas de subíndices: \[a_1,\,a_2,\,a_3,\,a_4,\ldots\] Con esta notación podemos definir una progresión geométrica como una sucesión ...

Leer más »