Últimas noticias
Home » Archivo de Etiquetas: matemáticas (página 4)

Archivo de Etiquetas: matemáticas

Aplicaciones de las derivadas. El teorema del valor medio

Ya hemos hablado en un par de artículos anteriores del concepto de derivada y de su interpretación tanto desde el punto de vista geométrico como desde el punto de vista físico. Son los siguientes: La derivada y la recta tangente a una curva. El problema de la velocidad. Derivada de una función. Ejemplos de derivadas. En este artículo desarrollaremos las ...

Leer más »

Derivada de la función compuesta. Regla de la cadena

Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de la derivada de una función en un punto usando la definición y aprovechando el cálculo de límites. A continuación, se introducen inmediatamente las reglas de derivación: de un número por una función, de la suma y la ...

Leer más »

Funciones continuas e inyectivas

Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis adicional de que la función es inyectiva vamos a ver enseguida que el máximo y el mínimo se alcanzan en los extremos del intervalo, pero esto ...

Leer más »

La propiedad de compacidad para funciones continuas

En un artículo anterior hemos obtenido dos importantes resultados relacionados con la continuidad de una función en un intervalo: el teorema de los ceros de Bolzano y el teorema del valor intermedio. De hecho, este último afirma que la imagen por una función continua de un intervalo es otro intervalo. Sin embargo el intervalo imagen no tiene por qué ser ...

Leer más »

5 ejercicios de geometría: rectas y planos, espacio euclídeo, problemas métricos

En las matemáticas del último curso de bachillerato de ciencias y tecnología, tras hacer un estudio exhaustivo de las matrices, determinantes y la resolución de sistemas de ecuaciones lineales (método de Gauss y Teorema de Rouché-Frobenius), se procede al estudio de la geometría en el espacio. Las matrices, los determinantes, el cálculo de rangos y la resolución de sistemas adquiere ...

Leer más »

Producto vectorial. Producto mixto de tres vectores. Aplicaciones

Producto vectorial Para una lectura comprensiva de este artículo se recomienda leer antes este otro: “Proyecciones. Producto escalar de vectores. Aplicaciones“. Dados dos vectores de distinta dirección podemos construir, trasladando cada vector al extremo del otro, un paralelogramo. Fíjate en la figura siguiente   Su área es el producto de la base por la altura y, con un poco de ...

Leer más »

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones La proyección de un punto \(A\) sobre una recta \(r\) es el punto \(B\) donde la recta perpendicular a \(r\) que pasa por \(A\) corta a la recta \(r\). Con un dibujo se entiende muy bien. La proyección de un segmento \(\overline {AB}\) sobre una recta \(r\) es otro segmento \(\overline {CD}\) contenido en la recta \(r\), cuyos extremos ...

Leer más »

Sistemas de ecuaciones lineales dependientes de un parámetro

Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que dependan de un parámetro. Recordemos pues, en primer lugar, el enunciado del Teorema de Rouché-Frobenius. Teorema de Rouché-Frobenius Sea \[\left\{ \begin{array}{l} {a_{11}}{x_1} + {a_{12}}{x_2} + \,.\,.\,.\,.\,.\, + {a_{1n}}{x_n} = {b_1}\\ {a_{21}}{x_1} ...

Leer más »

Sobre vectores y matrices. Independencia lineal. Rango de una matriz

Espacios vectoriales Llamaremos \(\mathbb{R}^2\) al conjunto de todos los pares ordenados de la forma \((a_1,a_2)\) tal que \(a_1,a_2\in\mathbb{R}\). Es decir: \[\mathbb{R}^2=\{(a_1,a_2):a_1,a_2\in\mathbb{R}\}\] De la misma forma: \[\mathbb{R}^3=\{(a_1,a_2,a_3):a_1,a_2,a_3\in\mathbb{R}\}\] \[\mathbb{R}^4=\{(a_1,a_2,a_3,a_4):a_1,a_2,a_3,a_4\in\mathbb{R}\}\] Y, en general: \[\mathbb{R}^n=\{(a_1,a_2,\ldots,a_n):a_1,a_2,\ldots,a_n\in\mathbb{R}\}\] Si vemos los elementos de \(\mathbb{R}^n\) como matrices fila podemos identificar este conjunto con el conjunto de las matrices de una fila y \(n\) columnas: \(\mathcal{M}_{1\times n}\). Recordemos que ...

Leer más »

Determinantes

Determinante de una matriz cuadrada Toda matriz cuadrada \(A\) lleva asociado un número, llamado determinante de \(A\), y que denotaremos mediante el símbolo \(|A|\). Este número, entre otras cosas, permite saber cuándo una matriz cuadrada tiene inversa y, caso de que ésta exista, también se utiliza para su cálculo utilizando otro método alternativo al método de Gauss, método que ya ...

Leer más »