Últimas noticias
Home » Archivo de Etiquetas: matemáticas selectividad

Archivo de Etiquetas: matemáticas selectividad

Determinantes. Propiedades y ejercicios

En la imagen superior tienes el desarrollo de un determinante de orden tres por la regla de Sarrus. \[\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}=(a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32})-\\ \qquad\qquad\qquad -(a_{13}a_{22}a_{31}+a_{12}a_{21}a_{33}+a_{11}a_{23}a_{32})\] El determinante de orden dos es muy sencillo de calcular: \[\begin{vmatrix} a_{11} &a_{12} \\ a_{21} &a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}\] Cuando el determinante es de orden ...

Leer más »

Problema de optimización 2

Problema de optimización para Matemáticas II (2º de Bachillerato de la modalidad de Ciencias y Tecnología). Enunciado. Dadas dos esferas de radios \(r\) y \(r’\) tales que la distancia entre sus centros es \(d\), se sitúa un punto luminoso en la línea de sus centros. ¿En qué posición habrá que situarlo para que la suma de las superficies iluminadas en ambas ...

Leer más »

Problema de optimización 1

Problema de optimización – Matemáticas II Enunciado. Sea \(AB\) un diámetro de una circunferencia de radio unidad, \(BD\) la tangente en \(B\), \(P\) un punto de la circunferencia, \(PD\) perpendicular a \(BD\) y \(AP\) una cuerda. Determinar \(P=(x, y)\) para que el área del trapecio rectángulo \(ABPD\) sea máxima. Indicación. Tómese cómo origen de coordenadas el centro de la circunferencia.

Leer más »

Exámenes de Selectividad UCLM – Matemáticas II

Junio 2010 – Propuesta A Junio 2010 – Propuesta B Junio 2011 – Propuesta A Junio 2011 – Propuesta B Junio 2012 – Propuesta A Junio 2012 – Propuesta B Septiembre 2012 – Propuesta A Septiembre 2012 – Propuesta B Junio 2013 – Propuesta A Junio 2013 – Propuesta B Junio 2016 – Propuesta A Junio 2016 – Propuesta B ...

Leer más »