Últimas noticias
Home » Archivo de Etiquetas: matemáticas ESO

Archivo de Etiquetas: matemáticas ESO

Funciones polinómicas

Una función polinómica, como su nombre indica, está definida mediante un polinomio, es decir: \[f(x)=a_nx^n+x_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\ldots+a_2x^2+a_1x^1+a_0\] Es fácil darse cuenta de que el dominio de una función polinómica es todo el conjunto \(\mathbb{R}\) de los números reales, ya que tiene sentido sustituir la variable \(x\) por cualquier número real para obtener su imagen \(f(x)\). O sea, si \(f\) es una función ...

Leer más »

El binomio de Newton. Ejercicios resueltos

Al final de estos apuntes sobre el binomio de Newton se propone una relación con 24 ejercicios. Los hay de muchos tipos. En concreto: Desarrollo de potencias de binomios cuyos términos sólo incluyen coeficientes enteros. Desarrollo de potencias de binomios cuyos términos incluyen radicales y fracciones. Escribir y simplificar el término que ocupa una posición determinada en el desarrollo de ...

Leer más »

Ecuaciones de primer y de segundo grado – Presentaciones

Adjunto a continuación un par de presentaciones en las que se desarrollan contenidos sobre la resolución de ecuaciones de primer y de segundo grado, a un nivel de la materia de matemáticas para segundo o tercero de Educación Secundaria Obligatoria (ESO). Aunque también pueden servir como repaso o introducción para cualquier otro curso de matemáticas ya sea en cuarto de ...

Leer más »

Matrices. Álgebra de matrices

Primeras definiciones Una matriz es un conjunto de elementos (números) ordenado en filas y columnas. En general una matriz se nombra con una letra mayúscula y a sus elementos con letras minúsculas indicando en subíndices la fila y la columna que ocupan. \[A = \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{…..}&{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{33}}}&{…..}&{{a_{2n}}}\\ {…..}&{…..}&{…..}&{…..}&{…..}\\ {{a_{m1}}}&{{a_{m2}}}&{{a_{m3}}}&{…..}&{{a_{mn}}} \end{array}} \right) = \left( {{a_{i\,j}}} \right)\quad{\begin{cases}i=1,2,\ldots,m\\j=1,2,\ldots,n\end{cases}}\] La matriz anterior tiene ...

Leer más »

Resolviendo ecuaciones e inecuaciones en las que aparece el valor absoluto

Recordemos que el valor absoluto de un número real cualquiera \(x\) se define de la siguiente manera: \[|x|=\begin{cases}x&\text{si}&x\geqslant0\\-x&\text{si}&x<0\end{cases}\] En otro artículo hablábamos del valor absoluto y de sus propiedades, y en él ya se hizo referencia a la posibilidad de resolver algunas ecuaciones o inecuaciones utlizando estas propiedades. Aquí seremos más explícitos y resolveremos de hecho varias ecuaciones e inecuaciones ...

Leer más »

Introducción al número real. Un paseo por el concepto de número en la Secundaria Obligatoria

Mi profesor de geometría de primero de carrera insertaba citas al comienzo de las relaciones de ejercicios que nos entregaba de cada tema. Recuerdo perfectamente una de las primeras: He de ser cruel para ser piadoso. El principio es malo, pero lo peor aún está por venir. Hamlet, Shakespeare. Con el tiempo descubrí que la cita no pretende desanimar, sino ...

Leer más »

Progresiones geométricas

Definición Un par de ejemplos de progresiones geométricas pueden ser los siguientes: Primer término \(2\) y razón \(2\): \(\{2,\,4,\,8,\,16,\,32,\,64,\,128,\ldots\}\) Primer término \(\dfrac{1}{2}\) y razón \(\dfrac{1}{2}\): \(\left\{\dfrac{1}{2},\,\dfrac{1}{4},\,\dfrac{1}{8},\,\dfrac{1}{16},\,\dfrac{1}{32},\,\dfrac{1}{64},\ldots\right\}\) Llamaremos términos de la progresión a cada uno de los números que la forman y los simbolizaremos mediante letras afectadas de subíndices: \[a_1,\,a_2,\,a_3,\,a_4,\ldots\] Con esta notación podemos definir una progresión geométrica como una sucesión ...

Leer más »

Progresiones aritméticas

Definición Algunos ejemplos de progresiones aritméticas pueden ser los siguientes: Primer término \(6\) y diferencia \(3\): \(\{6,\,9,\,12,\,15,\,18,\,21,\ldots\}\) Primer término \(14\) y diferencia \(-4\): \(\{14,\,10,\,6,\,2,\,-2,\,-6,\ldots\}\) Primer término \(0\) y diferencia \(\dfrac{1}{2}\): \(\left\{0,\,\dfrac{1}{2},\,1,\,\dfrac{3}{2},\,2,\,\dfrac{5}{2},\,3,\,\dfrac{7}{2},\ldots\right\}\) Llamaremos términos de la progresión a cada uno de los números que la forman y los simbolizaremos mediante letras afectadas de subíndices: \[a_1,\,a_2,\,a_3,\,a_4,\ldots\,a_n,\ldots\] Con esta notación podemos definir una ...

Leer más »

Exámenes de matemáticas de 4º de ESO (opción B o académicas)

Fracciones. Intervalos. Números decimales: aproximaciones y errores. Fracciones. Intervalos. Números decimales: aproximaciones y errores. Potencias. – 1 Fracciones. Intervalos. Números decimales: aproximaciones y errores. Potencias. – 2 Fracciones. Números decimales. Potencias. Radicales. Fracciones. Potencias. Radicales. – 1 Fracciones. Potencias. Radicales. – 2 Fracciones. Potencias. Radicales. Ecuaciones. – 1 Fracciones. Potencias. Radicales. Ecuaciones. – 2 Fracciones. Potencias. Radicales. Ecuaciones. – 3 ...

Leer más »

Exámenes de matemáticas de 4º ESO (opción A o aplicadas)

MCD. MCM. Operaciones con enteros y fracciones. Problemas. – 1 MCD. MCM. Operaciones con enteros y fracciones. Problemas. – 2 MCD. MCM. Operaciones con enteros y fracciones. Problemas. – 3 Números decimales. Intervalos. Operaciones con potencias. Operaciones con radicales. – 1 Números decimales. Intervalos. Operaciones con potencias. Operaciones con radicales. – 2 Números decimales. Intervalos. Operaciones con potencias. Operaciones con ...

Leer más »