Últimas noticias
Home » Archivo de Etiquetas: matemáticas bachillerato (página 2)

Archivo de Etiquetas: matemáticas bachillerato

Producto vectorial. Producto mixto de tres vectores. Aplicaciones

Producto vectorial Para una lectura comprensiva de este artículo se recomienda leer antes este otro: “Proyecciones. Producto escalar de vectores. Aplicaciones“. Dados dos vectores de distinta dirección podemos construir, trasladando cada vector al extremo del otro, un paralelogramo. Fíjate en la figura siguiente   Su área es el producto de la base por la altura y, con un poco de ...

Leer más »

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones La proyección de un punto \(A\) sobre una recta \(r\) es el punto \(B\) donde la recta perpendicular a \(r\) que pasa por \(A\) corta a la recta \(r\). Con un dibujo se entiende muy bien. La proyección de un segmento \(\overline {AB}\) sobre una recta \(r\) es otro segmento \(\overline {CD}\) contenido en la recta \(r\), cuyos extremos ...

Leer más »

Sistemas de ecuaciones lineales dependientes de un parámetro

Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que dependan de un parámetro. Recordemos pues, en primer lugar, el enunciado del Teorema de Rouché-Frobenius. Teorema de Rouché-Frobenius Sea \[\left\{ \begin{array}{l} {a_{11}}{x_1} + {a_{12}}{x_2} + \,.\,.\,.\,.\,.\, + {a_{1n}}{x_n} = {b_1}\\ {a_{21}}{x_1} ...

Leer más »

Rango de una matriz usando determinantes

En un artículo anterior dijimos que el rango de una matriz \(A\), \(r(A)\), es el número de filas que son linealmente independientes. También se hizo uso del método de Gauss para calcular el rango de una matriz: una vez aplicado el método, el rango de una matriz coincide con el número de filas no nulas. Pero hay otro método, en ...

Leer más »

Sobre vectores y matrices. Independencia lineal. Rango de una matriz

Espacios vectoriales Llamaremos \(\mathbb{R}^2\) al conjunto de todos los pares ordenados de la forma \((a_1,a_2)\) tal que \(a_1,a_2\in\mathbb{R}\). Es decir: \[\mathbb{R}^2=\{(a_1,a_2):a_1,a_2\in\mathbb{R}\}\] De la misma forma: \[\mathbb{R}^3=\{(a_1,a_2,a_3):a_1,a_2,a_3\in\mathbb{R}\}\] \[\mathbb{R}^4=\{(a_1,a_2,a_3,a_4):a_1,a_2,a_3,a_4\in\mathbb{R}\}\] Y, en general: \[\mathbb{R}^n=\{(a_1,a_2,\ldots,a_n):a_1,a_2,\ldots,a_n\in\mathbb{R}\}\] Si vemos los elementos de \(\mathbb{R}^n\) como matrices fila podemos identificar este conjunto con el conjunto de las matrices de una fila y \(n\) columnas: \(\mathcal{M}_{1\times n}\). Recordemos que ...

Leer más »

Determinantes. Propiedades y ejercicios

En la imagen superior tienes el desarrollo de un determinante de orden tres por la regla de Sarrus. \[\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}=(a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32})-\\ \qquad\qquad\qquad -(a_{13}a_{22}a_{31}+a_{12}a_{21}a_{33}+a_{11}a_{23}a_{32})\] El determinante de orden dos es muy sencillo de calcular: \[\begin{vmatrix} a_{11} &a_{12} \\ a_{21} &a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}\] Cuando el determinante es de orden ...

Leer más »

Determinantes

Determinante de una matriz cuadrada Toda matriz cuadrada \(A\) lleva asociado un número, llamado determinante de \(A\), y que denotaremos mediante el símbolo \(|A|\). Este número, entre otras cosas, permite saber cuándo una matriz cuadrada tiene inversa y, caso de que ésta exista, también se utiliza para su cálculo utilizando otro método alternativo al método de Gauss, método que ya ...

Leer más »

Matrices. Álgebra de matrices

Primeras definiciones Una matriz es un conjunto de elementos (números) ordenado en filas y columnas. En general una matriz se nombra con una letra mayúscula y a sus elementos con letras minúsculas indicando en subíndices la fila y la columna que ocupan. \[A = \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{…..}&{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{33}}}&{…..}&{{a_{2n}}}\\ {…..}&{…..}&{…..}&{…..}&{…..}\\ {{a_{m1}}}&{{a_{m2}}}&{{a_{m3}}}&{…..}&{{a_{mn}}} \end{array}} \right) = \left( {{a_{i\,j}}} \right)\quad{\begin{cases}i=1,2,\ldots,m\\j=1,2,\ldots,n\end{cases}}\] La matriz anterior tiene ...

Leer más »