Últimas noticias
Home » Archivo de Etiquetas: matemáticas bachillerato

Archivo de Etiquetas: matemáticas bachillerato

Ecuaciones logarítmicas

En una ecuación logarítmica la incógnita está afectada por un logaritmo. Al igual que ocurría con las ecuaciones exponenciales, no hay un procedimiento concreto para resolver una ecuación logarítmica, pero debemos conocer y aplicar con criterio las propiedades de los logaritmos. En general, la estrategia para resolver ecuaciones logarítmicas consiste en transformar la ecuación hasta que los dos miembros de ...

Leer más »

Expresiones, identidades y ecuaciones trigonométricas

En Matemáticas I (1º de Bachillerato) se trabaja mucho la demostración de identidades trigonométricas, la simplificación de expresiones en las que aparecen razones trigonométricas, la resolución de ecuaciones trigonométricas y de sistemas de ecuaciones trigonométricas. Veamos unos ejemplos. Identidades trigonométricas Demostrar las siguientes identidades trigonométricas: \[\frac{\cos x+\text{sen}\,x}{\cos x-\text{sen}\,x}-\frac{\cos x-\text{sen}\,x}{\cos x+\text{sen}\,x}=2\text{tg}\,2x\] \[\frac{\text{tg}\,x}{\cos^2x}=\frac{1+\text{tg}^2x}{\text{cotg}^2x}\] Expresiones trigonométricas Simplificar las siguientes expresiones trigonométricas: \[\frac{\text{sen}\,\alpha+\text{cotg}\,\alpha}{\text{tg}\,\alpha+\text{cosec}\,\alpha}\] \[2\text{tg}\,\alpha\cdot\cos^2\frac{\alpha}{2}-\text{sen}\,\alpha\] ...

Leer más »

Funciones polinómicas

Una función polinómica, como su nombre indica, está definida mediante un polinomio, es decir: \[f(x)=a_nx^n+x_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\ldots+a_2x^2+a_1x^1+a_0\] Es fácil darse cuenta de que el dominio de una función polinómica es todo el conjunto \(\mathbb{R}\) de los números reales, ya que tiene sentido sustituir la variable \(x\) por cualquier número real para obtener su imagen \(f(x)\). O sea, si \(f\) es una función ...

Leer más »

Variables aleatorias. Distribuciones binomial y normal

En estos apuntes se desarrollan los siguientes contenidos del bloque de estadística y probabilidad, correspondientes a la materia de Matemáticas aplicadas a las Ciencias Sociales II, de segundo de Bachillerato. Al final se propone una relación con 24 ejercicios, de los que se incluye su solución final. Matemáticas aplicadas a las Ciencias Sociales II – Variables aleatorias. Distribuciones binomial y ...

Leer más »

El binomio de Newton. Ejercicios resueltos

Al final de estos apuntes sobre el binomio de Newton se propone una relación con 24 ejercicios. Los hay de muchos tipos. En concreto: Desarrollo de potencias de binomios cuyos términos sólo incluyen coeficientes enteros. Desarrollo de potencias de binomios cuyos términos incluyen radicales y fracciones. Escribir y simplificar el término que ocupa una posición determinada en el desarrollo de ...

Leer más »

5 ejercicios de geometría: rectas y planos, espacio euclídeo, problemas métricos

En las matemáticas del último curso de bachillerato de ciencias y tecnología, tras hacer un estudio exhaustivo de las matrices, determinantes y la resolución de sistemas de ecuaciones lineales (método de Gauss y Teorema de Rouché-Frobenius), se procede al estudio de la geometría en el espacio. Las matrices, los determinantes, el cálculo de rangos y la resolución de sistemas adquiere ...

Leer más »

Producto vectorial. Producto mixto de tres vectores. Aplicaciones

Producto vectorial Para una lectura comprensiva de este artículo se recomienda leer antes este otro: “Proyecciones. Producto escalar de vectores. Aplicaciones“. Dados dos vectores de distinta dirección podemos construir, trasladando cada vector al extremo del otro, un paralelogramo. Fíjate en la figura siguiente   Su área es el producto de la base por la altura y, con un poco de ...

Leer más »

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones La proyección de un punto \(A\) sobre una recta \(r\) es el punto \(B\) donde la recta perpendicular a \(r\) que pasa por \(A\) corta a la recta \(r\). Con un dibujo se entiende muy bien. La proyección de un segmento \(\overline {AB}\) sobre una recta \(r\) es otro segmento \(\overline {CD}\) contenido en la recta \(r\), cuyos extremos ...

Leer más »

Sistemas de ecuaciones lineales dependientes de un parámetro

Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que dependan de un parámetro. Recordemos pues, en primer lugar, el enunciado del Teorema de Rouché-Frobenius. Teorema de Rouché-Frobenius Sea \[\left\{ \begin{array}{l} {a_{11}}{x_1} + {a_{12}}{x_2} + \,.\,.\,.\,.\,.\, + {a_{1n}}{x_n} = {b_1}\\ {a_{21}}{x_1} ...

Leer más »

Rango de una matriz usando determinantes

En un artículo anterior dijimos que el rango de una matriz \(A\), \(r(A)\), es el número de filas que son linealmente independientes. También se hizo uso del método de Gauss para calcular el rango de una matriz: una vez aplicado el método, el rango de una matriz coincide con el número de filas no nulas. Pero hay otro método, en ...

Leer más »