Home » Archivo de Etiquetas: logaritmo

Archivo de Etiquetas: logaritmo

Logaritmos. ¿Qué son? Definición, propiedades y ejercicios

Consideremos la ecuación \(2^x=75\). Como quiera que \(2^6=64\) y \(2^7=128\), es fácil darse cuenta de que la solución de la ecuación debe ser un número comprendido entre \(6\) y \(7\). Esto es porque, cuanto mayor es \(x\), mayor es \(2^x\) (la razón precisa que daría un matemático es que la función exponencial de base mayor que \(1\) es creciente). Por ...

Leer más »

Logaritmos. Contexto histórico y aplicaciones (IV)

Buscando el error La corrección sistemática del error no favorece su eliminación. En clase de matemáticas hay que intentar que los alumnos sean los que perciban los errores. Darle lugar al error en la clase es trabajarlo descubriendo las hipótesis falsas que llevaron a producirlo, buscando los posibles caminos hasta redescubrir los conceptos validados y matemáticamente aceptados, comparando versiones correctas ...

Leer más »

Logaritmos. Contexto histórico y aplicaciones (III)

Podríamos redescubrir las propiedades del logaritmo a partir del análisis de la tabla utilizada anteriormente (véase artículo anterior). ¿De qué manera? Recordemos que “el logaritmo de un número es el exponente al cual se debe elevar la base del logaritmo para obtener dicho número (llamado argumento)”. Retomando la primera de las multiplicaciones del artículo anterior tenemos: \[16\cdot512=2^4\cdot2^9=2^{13}=8192\] Según lo anterior, ...

Leer más »

Logaritmos. Contexto histórico y aplicaciones (II)

Retomando la idea original de Napier, que motivara el surgimiento de los logaritmos, abordaremos el asunto de un modo similar, aunque mucho más simplificado. Podríamos comenzar calculando, como lo hacemos habitualmente y sin ayuda de la calculadora, las siguientes multiplicaciones: \[16\cdot512\quad;\quad81\cdot19683\quad;\quad256\cdot262144\quad;\quad625\cdot1953125\] Tendríamos que aplicar en cada caso el conocido, desde pequeños, algoritmo de la multiplicación. Algoritmo que por cierto utilizaban ...

Leer más »

Logaritmos. Contexto histórico y aplicaciones (I)

Los logaritmos irrumpen en la historia de la humanidad hace casi 400 años y fueron utilizados durante casi 350 años como la principal herramienta en los cálculos aritméticos. Un increíble esfuerzo se ahorró usándolos, pues permitieron trabajar con los pesados cálculos necesarios en los problemas de agrimensura, astronomía, y particularmente en las aplicaciones a la navegación. Merced a estos números, ...

Leer más »

La función logarítmica

Para la función exponencial \(y=a^x\) con \(a>0\) y distinto de \(1\), se cumple que a valores diferentes de \(x\) le corresponden valores diferentes de \(y\), por lo que a cada valor de \(y\) le corresponde un único valor de \(x\) (es decir, la función exponencial es inyectiva). Esto significa que la función exponencial de base \(a\) admite función inversa, que ...

Leer más »