Home » Archivo de Etiquetas: integrales

Archivo de Etiquetas: integrales

Acceso Universidad Matemáticas II – Integrales y áreas (3)

Este ejercicio de Matemáticas II fue propuesto en junio de 2018 por la Universidad de Castilla-La Mancha en las Pruebas de Evaluación para Acceso a la Universidad (propuesta B). Bloque asociado Análisis. Estándares de aprendizaje evaluables Aplica los métodos básicos para el cálculo de primitivas de funciones. Calcula el área de recintos limitados por rectas y curvas sencillas o por ...

Leer más »

Acceso Universidad Matemáticas II – Integrales y áreas (2)

Este ejercicio de Matemáticas II fue propuesto en septiembre de 2011 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Bloque asociado Análisis. Estándares de aprendizaje evaluables Aplica los métodos básicos para el cálculo de primitivas de funciones. Enunciado Calcula la integral \[\int\frac{x^2-3x+1}{x^3-5x^2+8x-4}dx\]

Leer más »

Acceso Universidad Matemáticas II – Integrales y áreas (1)

Este ejercicio de Matemáticas II fue propuesto en junio de 2014 por la Universidad de Castilla-La Mancha en las Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (propuesta A). Bloque asociado Análisis. Estándares de aprendizaje evaluables Aplica los métodos básicos para el cálculo de primitivas de funciones. Calcula el área de recintos limitados por rectas y curvas sencillas o ...

Leer más »

Integrales indefinidas y cálculo de áreas

Uno de los problemas típicos que se proponen siempre en Selectividad, en la materia de Matemáticas II, son el cálculo de integrales indefinidas y el uso de las integrales para el cálculo de áreas. Os propongo un par de integrales indefinidas (racionales) y un par de problemas de cálculo de áreas. Como siempre, hay que pensarlos e intentar hacerlos antes ...

Leer más »

Cálculo de áreas de recintos planos. Volumen de un cuerpo de revolución

En este artículo damos por hecho que se saben integrar funciones elementales utilizando los conocidos métodos de integración. Utilizaremos además la conocida regla de Barrow, según la cual si \(F(x)\) es una primitiva de \(f(x)\), y \(f(x)\) es continua en un intervalo cerrado \([a\ ,\ b]\), entonces: \[\int_a^b f(x)\, dx=F(b)-F(a)\] Cálculo de áreas de recintos planos Si una función \(y=f(x)\) ...

Leer más »

Sólidos de revolución. El Cuerno de Gabriel

Un sólido de revolución es una figura sólida obtenida como consecuencia de hacer rotar una región plana alrededor de una recta cualquiera que esté contenida en el mismo plano. Una superficie de revolución es la superficie exterior de un sólido de revolución, es decir, encierra una porción de espacio dentro de la misma. En lenguaje matemático, si tenemos dos funciones ...

Leer más »

Volumen de un cuerpo de revolución

Para calcular el área de una figura por medio de una integral se dividía esta figura en rectangulitos pequeñísimos de base \(dx\) y altura \(f(x)\), y la suma de las áreas de estos infinitos rectangulitos era el área de toda la figura: \(A=\int_a^b f(x)\, dx\) (ver el artículo dedicado a la integral definida). De la misma manera, para calcular el ...

Leer más »

Cálculo de áreas de figuras planas

Tanto en el artículo dedicado al teorema fundamental del cálculo como en el de la regla de Barrow hemos visto ya ejemplos de que la integral definida \(\int_a^b f(x)dx\) se interpreta geométricamente como el área encerrada por la gráfica de la función \(f\), el eje \(X\) y las rectas verticales \(x=a\) y \(x=b\). En este artículo daremos unas pautas, según ...

Leer más »

La regla de Barrow

Dada una función continua en un intervalo \([a,\,b]\), podemos calcular \(\int_a^b f(x)dx\) de una manera mucho más rápida y eficiente a cómo se ha hecho en uno de los ejemplos del artículo anterior, en el que directamente se había aplicado el teorema fundamental del cálculo. Regla de Barrow Demostración: Por el teorema fundamental del cálculo sabemos que la función \(G(x)=\int_a^x ...

Leer más »