Últimas noticias
Home » Archivo de Etiquetas: integral

Archivo de Etiquetas: integral

Aplicación de las progresiones geométricas a la cuadratura de hipérbolas infinitas

Consideremos la función \(y=\dfrac{1}{x^2}\), definida en el intervalo \([0,5\,,\,+\infty)\). Su gráfica es la siguiente: El área limitada por la curva anterior, el eje \(X\) y la recta \(x=\dfrac{1}{2}\) se puede ver representada en la figura dada a continuación. Con una suficiente formación en análisis matemático, se puede hallar el área anterior mediante el cálculo de la integral impropia \[\int_{1/2}^{\infty}\frac{1}{x^2}\,dx\] De ...

Leer más »

Cálculo de áreas de figuras planas

Tanto en el artículo dedicado al teorema fundamental del cálculo como en el de la regla de Barrow hemos visto ya ejemplos de que la integral definida \(\int_a^b f(x)dx\) se interpreta geométricamente como el área encerrada por la gráfica de la función \(f\), el eje \(X\) y las rectas verticales \(x=a\) y \(x=b\). En este artículo daremos unas pautas, según ...

Leer más »

Integral definida

Consideremos una función \(y=f(x)\) continua en un intervalo \([a,\,b]\). Hagamos una partición de este intervalo por los puntos \(t_0,\,t_1,\,t_2,\,\ldots,\,t_{n-1},\,t_n\). Supongamos también que esta partición cumple que \(a=t_0<t_1<t_2<\ldots<t_{n-1}<t_n=b\). Consideremos los rectángulos cuyas bases son los intervalos parciales \([t_i,\,t_{i+1}]\) y cuyas alturas son los mínimos \(m_i\) de la función en cada uno de dichos intervalos. La suma de las áreas de esos ...

Leer más »

Una integral racional

Vamos a calcular una primitiva de la función \(f(x)=\dfrac{1}{x^2-a^2}\) donde \(a\) es un número real cualquiera distinto de cero. Es decir, se trata de calcular la integral indefinida \(\displaystyle\int{\frac{1}{x^2-a^2}dx}\). Para ello vamos a descomponer en dos fracciones simples la fracción \(\dfrac{1}{x^2-a^2}\). Como \(x^2-a^2=(x+a)(x-a)\), tenemos: \[\frac{1}{x^2-a^2}=\frac{E}{x+a}+\frac{F}{x-a}=\frac{E(x-a)+F(x+a)}{(x+a)(x-a)}=\] \[=\frac{Ex-Ea+Fx+Fa}{x^2-a^2}=\frac{(E+F)x-Ea+Fa}{x^2-a^2}\] De aquí se deduce, igualando las fracciones algebraicas primera y última, que \[\begin{cases}E+F=0\\-Ea+Fa=1\end{cases}\Rightarrow\begin{cases}E=-F\\2Fa=1\end{cases}\Rightarrow\begin{cases}E=-\frac{1}{2a}\\F=\frac{1}{2a}\end{cases}\] Es ...

Leer más »

Integrales indefinidas propuestas en Selectividad

En los exámenes de Selectividad (PAEG) de Matemáticas II que la Universidad de Castilla-La Mancha ha propuesto durante estos últimos años, han aparecido, como es natural, muchos ejercicios de cálculo de integrales indefinidas. Para resolverlas, o bien la integral es inmediata, o bien se utilizan alguno de los métodos vistos durante el curso en Matemáticas II: sustitución o cambio de ...

Leer más »