Home » Archivo de Etiquetas: integración

Archivo de Etiquetas: integración

Volumen de un cuerpo de revolución

Para calcular el área de una figura por medio de una integral se dividía esta figura en rectangulitos pequeñísimos de base \(dx\) y altura \(f(x)\), y la suma de las áreas de estos infinitos rectangulitos era el área de toda la figura: \(A=\int_a^b f(x)\, dx\) (ver el artículo dedicado a la integral definida). De la misma manera, para calcular el ...

Leer más »

La regla de Barrow

Dada una función continua en un intervalo \([a,\,b]\), podemos calcular \(\int_a^b f(x)dx\) de una manera mucho más rápida y eficiente a cómo se ha hecho en uno de los ejemplos del artículo anterior, en el que directamente se había aplicado el teorema fundamental del cálculo. Regla de Barrow Demostración: Por el teorema fundamental del cálculo sabemos que la función \(G(x)=\int_a^x ...

Leer más »

El teorema fundamental del cálculo

En el artículo anterior hemos visto que el concepto de integral definida de una función \(f\) en un intervalo \([a,\,b]\), \(\int_a^b f(x)dx\), viene a representar el área comprendida entre la curva (gráfica de \(f\)), el eje \(X\) y las rectas verticales \(x=a\) y \(x=b\), tal y como se representa en la siguiente figura. Existe una estrecha relación entre la integral ...

Leer más »

Integral definida

Consideremos una función \(y=f(x)\) continua en un intervalo \([a,\,b]\). Hagamos una partición de este intervalo por los puntos \(t_0,\,t_1,\,t_2,\,\ldots,\,t_{n-1},\,t_n\). Supongamos también que esta partición cumple que \(a=t_0<t_1<t_2<\ldots<t_{n-1}<t_n=b\). Consideremos los rectángulos cuyas bases son los intervalos parciales \([t_i,\,t_{i+1}]\) y cuyas alturas son los mínimos \(m_i\) de la función en cada uno de dichos intervalos. La suma de las áreas de esos ...

Leer más »

El método de integración por partes

El método de integración por partes se deduce de la regla de derivación de un producto. Dadas dos funciones \(f\) y \(g\) tenemos que: \[\left(f(x)\cdot g(x)\right)’=f'(x)\cdot g(x)+f(x)\cdot g'(x)\] Si despejamos el último sumando la expresión anterior la podemos escribir así: \[f(x)\cdot g'(x)=\left(f(x)\cdot g(x)\right)’-f'(x)\cdot g(x)\] Integrando las funciones de ambos miembros de la igualdad tendremos: \[\int f(x)\cdot g'(x)dx=f(x)\cdot g(x)-\int f'(x)\cdot g(x)dx\] ...

Leer más »