Home » Archivo de Etiquetas: hipérbola

Archivo de Etiquetas: hipérbola

Aplicación de las progresiones geométricas a la cuadratura de hipérbolas infinitas

Consideremos la función \(y=\dfrac{1}{x^2}\), definida en el intervalo \([0,5\,,\,+\infty)\). Su gráfica es la siguiente: El área limitada por la curva anterior, el eje \(X\) y la recta \(x=\dfrac{1}{2}\) se puede ver representada en la figura dada a continuación. Con una suficiente formación en análisis matemático, se puede hallar el área anterior mediante el cálculo de la integral impropia \[\int_{1/2}^{\infty}\frac{1}{x^2}\,dx\] De ...

Leer más »

La función de proporcionalidad inversa. La función hiperbólica. Hipérbolas

La función de proporcionalidad inversa es una función real de variable real cuya ecuación viene dada por \(f(x)=\dfrac{k}{x}\), donde \(k\) es un número real distinto de cero. La gráfica de la función de proporcionalidad inversa es una hipérbola. Es muy fácil darse cuenta de que si \(x\rightarrow\pm\infty\), entonces \(f(x)\rightarrow0\); y si \(x\rightarrow0\), entonces \(f(x)\rightarrow\pm\infty\). Es decir: \[\lim_{x\to\pm\infty}\frac{k}{x}=0\quad\text{;}\quad\lim_{x\to0}\frac{k}{x}=\pm\infty\] De lo anterior ...

Leer más »

Intersección de una cónica y una recta

Resolviendo el sistema correspondiente a la ecuación de la recta y de la cónica se obtienen los puntos donde la recta corta a la cónica. La ecuación de una cónica es una ecuación de segundo grado y la de una recta es de primer grado. Entonces, para hallar los puntos comunes a una y otra tendremos que resolver el sistema ...

Leer más »

La hipérbola

Definición A esa constante se la suele llamar \(2a\). La hipérbola es también una curva con abundantes aplicaciones. Un ejemplo bastante conocido es la relación entre la presión y el volumen de un gas ideal a temperatura constante, que viene representada por la rama positiva de una hipérbola equilátera. Lo veremos al final de esta entrada. Ecuación reducida Veremos la ...

Leer más »

Secciones planas de una superficie cónica

Una superficie cónica está engendrada por el giro de una recta \(g\) (llamada generatriz) alrededor de otra recta \(e\) (llamada eje) con la cual se corta en un punto \(V\) (vértice). La podemos ver representada en la siguiente figura. Si a una superficie cónica la cortamos por un plano que no pasa por el vértice, la intersección que resulta es ...

Leer más »