Últimas noticias
Home » Archivo de Etiquetas: geometría (página 2)

Archivo de Etiquetas: geometría

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones La proyección de un punto \(A\) sobre una recta \(r\) es el punto \(B\) donde la recta perpendicular a \(r\) que pasa por \(A\) corta a la recta \(r\). Con un dibujo se entiende muy bien. La proyección de un segmento \(\overline {AB}\) sobre una recta \(r\) es otro segmento \(\overline {CD}\) contenido en la recta \(r\), cuyos extremos ...

Leer más »

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín

Una ecuación lineal es una ecuación polinómica de grado uno con una o varias incógnitas. Si la ecuación solamente tiene una incógnita la ecuación es de la forma \[ax+b=0\] donde \(a\) y \(b\) son números reales con \(a\neq0\) , y \(x\) es la incógnita. Como \(a\neq0\) , \(a\) tiene inverso, con lo que podemos despejar la incógnita con facilidad. \[ax ...

Leer más »

Secciones planas de una superficie cónica

Una superficie cónica está engendrada por el giro de una recta \(g\) (llamada generatriz) alrededor de otra recta \(e\) (llamada eje) con la cual se corta en un punto \(V\) (vértice). La podemos ver representada en la siguiente figura. Si a una superficie cónica la cortamos por un plano que no pasa por el vértice, la intersección que resulta es ...

Leer más »

Lugares geométricos

Lugar geométrico es un conjunto de puntos que cumplen una propiedad determinada, de un modo integrante y excluyente. Integrante significa que todos los puntos que la cumplen pertenecen al lugar geométrico. Excluyente, que todos los puntos que no la cumplen no están en el lugar geométrico. Una vez que se establece la propiedad geométrica que define el lugar geométrico, ha ...

Leer más »

Cambio de sistema de referencia ortonormal

Traslación de ejes Consideremos las referencias ortonormales \(R_1=\{O\,;\,\{\mathbf{i},\mathbf{j}\}\}\)  y \(R_2=\{O’\,;\,\{\mathbf{i},\mathbf{j}\}\}\) que aparecen en la figura 12. Obsérvese que la segunda referencia, \(R_2\), tiene los ejes paralelos a los de la primera, \(R_1\). Supongamos que las coordenadas del nuevo origen, respecto de la referencia \(R_1\) son \(O'(a,b)\) y que las coordenadas de un punto \(A\) son, respecto de \(R_1\), \(A(x,y)\) y, respecto de \(R_2\), \(A(x’,y’)\). ...

Leer más »

Área del triángulo

Trabajaremos en el triángulo de la figura 11. En él, la ecuación de la recta \(r\) es \[r\equiv\frac{x-c_1}{b_1-c_1}=\frac{y-c_2}{b_2-c_2}\Leftrightarrow(b_2-c_2)x+(b_1-c_1)y+(b_1c_2-c_1b_2)=0\] El área \(S\) del triángulo \(ABC\) es \[S=\frac{1}{2}\cdot|\overrightarrow{CB}|\cdot|\overrightarrow{AH}|\] Pero \[|\overrightarrow{CB}|=\sqrt{(b_1-c_1)^2+(b_2-c_2)^2}\] \[|\overrightarrow{AH}|=\frac{|(b_2-c_2)a_1+(c_1-b_1)a_2+b_1c_2-c_1b_2|}{\sqrt{(b_1-c_1)^2+(b_2-c_2)^2}}\] Obsérvese que para hallar \(AH\) se ha utilizado la fórmula de la distancia de un punto a una recta vista en la lección anterior. Sustituyendo estas expresiones en la fórmula del área del ...

Leer más »

Distancia de un punto a una recta

La distancia de un punto \(P(p_1,p_2)\) a una recta \(r\equiv Ax+By+C=0\) es la longitud del segmento de perpendicular a la recta, trazada por el punto \(P\), comprendido entre éste y aquella. En la figura 10, \(d(P,r)=d(P,M)\). Para calcularla podemos hallar la recta s perpendicular a \(r\) que pasa por \(P\), resolver el sistema formado por ambas  rectas para hallar el punto ...

Leer más »