Últimas noticias
Home » Archivo de Etiquetas: función

Archivo de Etiquetas: función

Funciones polinómicas

Una función polinómica, como su nombre indica, está definida mediante un polinomio, es decir: \[f(x)=a_nx^n+x_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\ldots+a_2x^2+a_1x^1+a_0\] Es fácil darse cuenta de que el dominio de una función polinómica es todo el conjunto \(\mathbb{R}\) de los números reales, ya que tiene sentido sustituir la variable \(x\) por cualquier número real para obtener su imagen \(f(x)\). O sea, si \(f\) es una función ...

Leer más »

Interpretando ecuaciones e inecuaciones matemáticas con desmos

En un examen de matemáticas de 1º de Bachillerato (Matemáticas I, modalidad de Ciencias y Tecnología) les propuse a mis alumnos, entre otras cosas, que resolvieran un par de ecuaciones, un sistema de ecuaciones no lineal, una inecuación con la incógnita en el denominador, y un sistema de inecuaciones. Si representamos cada una de ellas con una aplicación gráfica, en ...

Leer más »

La función cuadrática o parabólica. La parábola

Ver artículo en formato imprimible (pdf) aquí Una función real de variable real es una función cuadrática o parabólica si su ecuación viene dada por un polinomio de segundo grado. Es decir, es una función de la forma \(f(x)=ax^2+bx+c\), donde \(a\), \(b\) y \(c\) son números reales y, además, \(a\neq0\) (indistintamente utilizaremos la notación \(y=ax^2+bx+c\)). La representación gráfica de una ...

Leer más »

La función lineal. Ecuación de la recta

Se dice que una función real de variable real es una función lineal si es de la forma \(f(x)=mx+n\) (indistintamente utilizaremos la escritura \(y=mx+n\)). Es decir, la ecuación de la función se corresponde con un polinomio de primer grado. La representación gráfica de una función lineal es siempre una recta. El coeficiente \(m\) recibe el nombre de pendiente de la recta ...

Leer más »

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Se proponen a continuación varios ejercicios relacionados con las derivadas y sus aplicaciones (por ejemplo, cálculo de extremos, monotonía, cálculo de la imagen de una función, soluciones de ciertas ecuaciones,…). Muchos de estos ejercicios requieren la aplicación del teorema de Rolle y del teorema del valor medio. Alguno de ellos (el número 12, por ejemplo) es de especial interés, pues ...

Leer más »

Aplicaciones de las derivadas. El teorema del valor medio

Ya hemos hablado en un par de artículos anteriores del concepto de derivada y de su interpretación tanto desde el punto de vista geométrico como desde el punto de vista físico. Son los siguientes: La derivada y la recta tangente a una curva. El problema de la velocidad. Derivada de una función. Ejemplos de derivadas. En este artículo desarrollaremos las ...

Leer más »

Funciones continuas e inyectivas

Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis adicional de que la función es inyectiva vamos a ver enseguida que el máximo y el mínimo se alcanzan en los extremos del intervalo, pero esto ...

Leer más »

La propiedad de compacidad para funciones continuas

En un artículo anterior hemos obtenido dos importantes resultados relacionados con la continuidad de una función en un intervalo: el teorema de los ceros de Bolzano y el teorema del valor intermedio. De hecho, este último afirma que la imagen por una función continua de un intervalo es otro intervalo. Sin embargo el intervalo imagen no tiene por qué ser ...

Leer más »

Integral definida

Consideremos una función \(y=f(x)\) continua en un intervalo \([a,\,b]\). Hagamos una partición de este intervalo por los puntos \(t_0,\,t_1,\,t_2,\,\ldots,\,t_{n-1},\,t_n\). Supongamos también que esta partición cumple que \(a=t_0<t_1<t_2<\ldots<t_{n-1}<t_n=b\). Consideremos los rectángulos cuyas bases son los intervalos parciales \([t_i,\,t_{i+1}]\) y cuyas alturas son los mínimos \(m_i\) de la función en cada uno de dichos intervalos. La suma de las áreas de esos ...

Leer más »

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas

Un problema relacionado con la velocidad Sea un proyectil lanzado verticalmente desde el suelo a una velocidad de \(45\) metros por segundo. Prescindiendo del rozamiento, se supone que solamente actúa la gravedad, por lo que el proyectil se mueve en línea recta. Sea \(f(t)\) la altura en metros que alcanza el proyectil \(t\) segundos después del lanzamiento. Si la fuerza ...

Leer más »