Últimas noticias
Home » Archivo de Etiquetas: expresiones algebraicas

Archivo de Etiquetas: expresiones algebraicas

Problemas de matemáticas que se resuelven planteando ecuaciones

El álgebra, y en concreto las ecuaciones, son instrumentos que nos permiten resolver con facilidad muchos problemas que se plantean en la vida real. Aunque no existe una “receta mágica” para la resolución de problemas, sí que podemos sugerir unas técnicas y etapas para enfrentarnos a los problemas por difíciles que estos sean. Son las siguientes: Veamos algunos ejemplos típicos ...

Leer más »

Potencias. Expresiones algebraicas. Igualdades notables (1)

Instrucciones: Para practicar con estos ejercicios te recomiendo que los copies en tu cuaderno o en hojas aparte, donde debes intentar realizarlos. Una vez que hayas finalizado, comprueba las soluciones haciendo click en el lugar correspondiente. Cuando mires las soluciones, se aconseja hacer una lectura atenta de las observaciones que acompañan, a veces, a cada uno de los ejercicios resueltos. ...

Leer más »

Problemas de matemáticas que se resuelven planteando ecuaciones

El álgebra, y en concreto las ecuaciones, son instrumentos que nos permiten resolver con facilidad muchos problemas que se plantean en la vida real. Aunque no existe una “receta mágica” para la resolución de problemas, sí que podemos sugerir unas técnicas y etapas para enfrentarnos a los problemas por difíciles que estos sean. Son las siguientes: Veamos algunos ejemplos típicos ...

Leer más »

Expresiones infinitas y la razón áurea

Supongamos que nos piden hallar un valor de \(x\) igual al de las siguientes expresiones infinitas: \[x=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}}\quad(1)\] \[x=1+\frac{1}{\displaystyle1+\frac{1}{\displaystyle 1+\frac{1}{1+\displaystyle\frac{1}{1+\ldots}}}}\quad(2)\] Dicho de otra manera, queremos otra forma de escribir el valor de \(x\), pero no como una expresión infinita. En el primer caso, precisamente por ser una expresión infinita, es fácil darse cuenta de que \[x=\sqrt{1+x}\] Entonces: \[x^2=1+x\Rightarrow x^2-x-1=0\] Y resolviendo ...

Leer más »