Home » Archivo de Etiquetas: ecuación de segundo grado

Archivo de Etiquetas: ecuación de segundo grado

Inecuaciones polinómicas de segundo grado. Resolución, ejemplos e interpretación gráfica

Una inecuación de segundo grado es una desigualdad que puede presentar cualquiera de las cuatro formas siguientes: \[ax^2+bx+c>0\quad;\quad ax^2+bx+c\geq0\] \[ax^2+bx+c<0\quad;\quad ax^2+bx+c\leq0\] donde \(a\), \(b\) y \(c\) son números reales, llamados coeficientes (\(a\neq0\)), y \(x\) es un número desconocido, llamado incógnita. El objetivo es, naturalmente, despejar la incógnita. A diferencia de las ecuaciones de segundo grado, en las que podía haber ...

Leer más »

La solución de la ecuación de segundo grado

Sabemos que una ecuación de segundo grado es una igualdad de la forma \[ax^2+bx+c=0\] donde \(a\), \(b\) y \(c\) son números reales, llamados coeficientes (\(a\neq0\)), y \(x\) es un número desconocido, llamado incógnita. El objetivo es, naturalmente, despejar la incógnita. Por ejemplo, ¿cuánto ha de valer \(x\) para que se cumpla la igualdad \(3x^2+2x-8=0\)? Probando con números enteros llegamos rápidamente ...

Leer más »

ecuaciones, ecuaciones, ecuaciones

En matemáticas, saber resolver ecuaciones es fundamental. En las matemáticas de bachillerato una de las cosas que hacemos a principio de curso es repasar todos los tipos de ecuaciones que hemos aprendido durante la educación secundaria obligatoria. Incluso se aprenden algunos más, como las ecuaciones exponenciales, las ecuaciones logarítmicas y las ecuaciones trigonométricas. Aquí puedes descargar unos apuntes teóricos en ...

Leer más »

Ecuaciones de segundo grado y de grado superior

Dado un polinomio de grado \(n\): \[p(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_2x^2+a_1x^1+a_0\, ,\ a_n\neq0\] nos planteamos como objetivo resolver la ecuación \[p(x)=0\] Si \(n=1\) la ecuación anterior es de primer grado y la podemos escribir de la forma \(ax+b=0\) con \(a\neq0\), cuya solución es \(\displaystyle x=-\frac{b}{a}\). Para más información sobre ecuaciones de primer grado puedes hacer clic aquí: apuntes 3º ESO. Si \(n=2\) la ecuación ...

Leer más »