Home » Archivo de Etiquetas: cálculo

Archivo de Etiquetas: cálculo

Aplicación de las progresiones geométricas a la cuadratura de hipérbolas infinitas

Consideremos la función \(y=\dfrac{1}{x^2}\), definida en el intervalo \([0,5\,,\,+\infty)\). Su gráfica es la siguiente: El área limitada por la curva anterior, el eje \(X\) y la recta \(x=\dfrac{1}{2}\) se puede ver representada en la figura dada a continuación. Con una suficiente formación en análisis matemático, se puede hallar el área anterior mediante el cálculo de la integral impropia \[\int_{1/2}^{\infty}\frac{1}{x^2}\,dx\] De ...

Leer más »

Argumentos a favor del cálculo mental

Este artículo se ha tomado del libro “Festival matemático. 50 pasatiempos y curiosidades“, de George Szpiro Desde que Pitágoras pintaba sus triángulos en los suelos arenosos de Samos hace unos 2500 años, los docentes no han dejado de buscar los mejores métodos para enseñar matemáticas a sus alumnos. Encontramos un ejemplo de ello en un debate surgido entre los expertos ...

Leer más »

Series infinitas de números reales. Series convergentes

Las sucesiones de números reales se introdujeron con la intención de poder considerar posteriormente sus “sumas” \[a_1+a_2+a_3+a_4+\ldots+a_n+\ldots\] Ya vimos un ejemplo de esta situación en el artículo dedicado a la paradoja de Zenón. Vimos también que se hablaba de “suma infinita” en el sentido de convergencia de una sucesión muy especial: la sucesión de sumas parciales. Vamos a formalizar esta ...

Leer más »

Volumen de un cuerpo de revolución

Para calcular el área de una figura por medio de una integral se dividía esta figura en rectangulitos pequeñísimos de base \(dx\) y altura \(f(x)\), y la suma de las áreas de estos infinitos rectangulitos era el área de toda la figura: \(A=\int_a^b f(x)\, dx\) (ver el artículo dedicado a la integral definida). De la misma manera, para calcular el ...

Leer más »

Cálculo de áreas de figuras planas

Tanto en el artículo dedicado al teorema fundamental del cálculo como en el de la regla de Barrow hemos visto ya ejemplos de que la integral definida \(\int_a^b f(x)dx\) se interpreta geométricamente como el área encerrada por la gráfica de la función \(f\), el eje \(X\) y las rectas verticales \(x=a\) y \(x=b\). En este artículo daremos unas pautas, según ...

Leer más »

Análisis Matemático – Cálculo

Introducción al número real. Un paseo por el concepto de número en la Secundaria Obligatoria Artículo introductorio al concepto de número real. La importancia del concimiento y dominio de los distintos tipos de números y sus operaciones. Un gran paso para afrontar el Bachillerato y, posteriormente, la Universidad. El conjunto de los números reales tiene estructura de cuerpo Se expone ...

Leer más »