Últimas noticias
Home » Archivo de Etiquetas: área

Archivo de Etiquetas: área

Aplicación de las progresiones geométricas a la cuadratura de hipérbolas infinitas

Consideremos la función \(y=\dfrac{1}{x^2}\), definida en el intervalo \([0,5\,,\,+\infty)\). Su gráfica es la siguiente: El área limitada por la curva anterior, el eje \(X\) y la recta \(x=\dfrac{1}{2}\) se puede ver representada en la figura dada a continuación. Con una suficiente formación en análisis matemático, se puede hallar el área anterior mediante el cálculo de la integral impropia \[\int_{1/2}^{\infty}\frac{1}{x^2}\,dx\] De ...

Leer más »

Cálculo de áreas de recintos planos. Volumen de un cuerpo de revolución

En este artículo damos por hecho que se saben integrar funciones elementales utilizando los conocidos métodos de integración. Utilizaremos además la conocida regla de Barrow, según la cual si \(F(x)\) es una primitiva de \(f(x)\), y \(f(x)\) es continua en un intervalo cerrado \([a\ ,\ b]\), entonces: \[\int_a^b f(x)\, dx=F(b)-F(a)\] Cálculo de áreas de recintos planos Si una función \(y=f(x)\) ...

Leer más »

Cálculo de áreas de figuras planas

Tanto en el artículo dedicado al teorema fundamental del cálculo como en el de la regla de Barrow hemos visto ya ejemplos de que la integral definida \(\int_a^b f(x)dx\) se interpreta geométricamente como el área encerrada por la gráfica de la función \(f\), el eje \(X\) y las rectas verticales \(x=a\) y \(x=b\). En este artículo daremos unas pautas, según ...

Leer más »

Integral definida

Consideremos una función \(y=f(x)\) continua en un intervalo \([a,\,b]\). Hagamos una partición de este intervalo por los puntos \(t_0,\,t_1,\,t_2,\,\ldots,\,t_{n-1},\,t_n\). Supongamos también que esta partición cumple que \(a=t_0<t_1<t_2<\ldots<t_{n-1}<t_n=b\). Consideremos los rectángulos cuyas bases son los intervalos parciales \([t_i,\,t_{i+1}]\) y cuyas alturas son los mínimos \(m_i\) de la función en cada uno de dichos intervalos. La suma de las áreas de esos ...

Leer más »