Home » Archivo de Etiquetas: área del triángulo

Archivo de Etiquetas: área del triángulo

Triángulo equilátero inscrito en un círculo

En un círculo se inscribe un triángulo equilátero de área 12 unidades cuadradas. ¿Cuál es el área de la región sombreada de azul? Os aseguro que no es difícil. Con algo de imaginación, el área del triángulo, el área del círculo y ¡Pitágoras!, se puede dar con la solución.

Leer más »

Longitudes, áreas y semejanza de triángulos

El otro día me encontré en Twitter con un problema de matemáticas en el que se involucraban longitudes y áreas. Me pareció atractivo y pensé en mis alumnos de secundaria. Hemos trabajado en clase suficientes “cosas” de matemáticas como para que un alumno que ha terminado la secundaria obligatoria (incluso antes) sea capaz de atacar y solucionar este problema. ¿Te atreves ...

Leer más »

Área del triángulo

Trabajaremos en el triángulo de la figura 11. En él, la ecuación de la recta \(r\) es \[r\equiv\frac{x-c_1}{b_1-c_1}=\frac{y-c_2}{b_2-c_2}\Leftrightarrow(b_2-c_2)x+(b_1-c_1)y+(b_1c_2-c_1b_2)=0\] El área \(S\) del triángulo \(ABC\) es \[S=\frac{1}{2}\cdot|\overrightarrow{CB}|\cdot|\overrightarrow{AH}|\] Pero \[|\overrightarrow{CB}|=\sqrt{(b_1-c_1)^2+(b_2-c_2)^2}\] \[|\overrightarrow{AH}|=\frac{|(b_2-c_2)a_1+(c_1-b_1)a_2+b_1c_2-c_1b_2|}{\sqrt{(b_1-c_1)^2+(b_2-c_2)^2}}\] Obsérvese que para hallar \(AH\) se ha utilizado la fórmula de la distancia de un punto a una recta vista en la lección anterior. Sustituyendo estas expresiones en la fórmula del área del ...

Leer más »