Últimas noticias
Home » Archivo de Etiquetas: ángulos

Archivo de Etiquetas: ángulos

El radián

Cuando se comienza a trabajar la trigonometría, la medida de los ángulos que se utiliza es el grado sexagesimal. Esta medida proviene de la antigua Babilonia. Los babilonios supusieron, en un principio, que el año tenía 360 días y tomaron como medida angular “el recorrido diario del sol alrededor de la Tierra”. Esta forma de medir ha perdurado hasta nuestros ...

Leer más »

Apuntes de Geometría para Matemáticas II

En los apuntes siguientes se trata, de manera esquemática (son “sólo” 13 páginas), todo el bloque de geometría de la materia Matemáticas II, de 2º de Bachillerato (modalidad de Ciencias y Tecnología). Los puedes descargar en un enlace al final de esta entrada. Los contenidos están divididos de la siguiente manera. Descárgalos aquí: Apuntes de geometría. Matemáticas II. 2º Bachillerato.

Leer más »

Ángulos central e inscrito en una circunferencia

Ver artículo en formato imprimible (pdf) aquí Dados dos puntos \(A\) y \(C\) en una circunferencia, los radios desde el centro \(O\) de la circunferencia a esos dos puntos forman un ángulo central \(\widehat{AOC}\). Un ángulo inscrito es un ángulo subtendido en un punto \(B\) de la circunferencia por otros dos puntos de la circunferencia \(A\) y \(C\). El ángulo inscrito \(\widehat{ABC}\) ...

Leer más »

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones La proyección de un punto \(A\) sobre una recta \(r\) es el punto \(B\) donde la recta perpendicular a \(r\) que pasa por \(A\) corta a la recta \(r\). Con un dibujo se entiende muy bien. La proyección de un segmento \(\overline {AB}\) sobre una recta \(r\) es otro segmento \(\overline {CD}\) contenido en la recta \(r\), cuyos extremos ...

Leer más »

Ángulo de dos rectas

Al cortarse dos rectas aparecen cuatro ángulos, dos a dos iguales (figura 4). Se conviene en llamar ángulo de las rectas \(r\) y \(s\) a uno de los dos menores iguales que forman. Por tanto: \[\alpha\leqslant90^{\circ}\] y, entonces, \[0\leqslant\cos\alpha\leqslant1\] El ángulo de dos rectas es el ángulo que forman sus vectores directores. Si las rectas son: \[\overrightarrow{OX}=\overrightarrow{OA}+k\cdot\vec{p}\] \[\overrightarrow{OX}=\overrightarrow{OB}+k\cdot\vec{q}\], el ángulo que ...

Leer más »