Últimas noticias
Home » Archivo de Etiquetas: análisis

Archivo de Etiquetas: análisis

Series infinitas de números reales. Series convergentes

Las sucesiones de números reales se introdujeron con la intención de poder considerar posteriormente sus “sumas” \[a_1+a_2+a_3+a_4+\ldots+a_n+\ldots\] Ya vimos un ejemplo de esta situación en el artículo dedicado a la paradoja de Zenón. Vimos también que se hablaba de “suma infinita” en el sentido de convergencia de una sucesión muy especial: la sucesión de sumas parciales. Vamos a formalizar esta ...

Leer más »

Derivada de la función compuesta. Regla de la cadena

Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de la derivada de una función en un punto usando la definición y aprovechando el cálculo de límites. A continuación, se introducen inmediatamente las reglas de derivación: de un número por una función, de la suma y la ...

Leer más »

Funciones continuas e inyectivas

Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis adicional de que la función es inyectiva vamos a ver enseguida que el máximo y el mínimo se alcanzan en los extremos del intervalo, pero esto ...

Leer más »

La propiedad de compacidad para funciones continuas

En un artículo anterior hemos obtenido dos importantes resultados relacionados con la continuidad de una función en un intervalo: el teorema de los ceros de Bolzano y el teorema del valor intermedio. De hecho, este último afirma que la imagen por una función continua de un intervalo es otro intervalo. Sin embargo el intervalo imagen no tiene por qué ser ...

Leer más »

Volumen de un cuerpo de revolución

Para calcular el área de una figura por medio de una integral se dividía esta figura en rectangulitos pequeñísimos de base \(dx\) y altura \(f(x)\), y la suma de las áreas de estos infinitos rectangulitos era el área de toda la figura: \(A=\int_a^b f(x)\, dx\) (ver el artículo dedicado a la integral definida). De la misma manera, para calcular el ...

Leer más »

El método de integración por partes

El método de integración por partes se deduce de la regla de derivación de un producto. Dadas dos funciones \(f\) y \(g\) tenemos que: \[\left(f(x)\cdot g(x)\right)’=f'(x)\cdot g(x)+f(x)\cdot g'(x)\] Si despejamos el último sumando la expresión anterior la podemos escribir así: \[f(x)\cdot g'(x)=\left(f(x)\cdot g(x)\right)’-f'(x)\cdot g(x)\] Integrando las funciones de ambos miembros de la igualdad tendremos: \[\int f(x)\cdot g'(x)dx=f(x)\cdot g(x)-\int f'(x)\cdot g(x)dx\] ...

Leer más »

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas

Un problema relacionado con la velocidad Sea un proyectil lanzado verticalmente desde el suelo a una velocidad de \(45\) metros por segundo. Prescindiendo del rozamiento, se supone que solamente actúa la gravedad, por lo que el proyectil se mueve en línea recta. Sea \(f(t)\) la altura en metros que alcanza el proyectil \(t\) segundos después del lanzamiento. Si la fuerza ...

Leer más »

Sucesiones de Cauchy. El teorema de complitud de \(R\)

Hemos dedicado varios artículos a hablar de sucesiones de números reales y de la noción de convergencia de una sucesión de números reales. De hecho, hemos visto ejemplos en los que se demostraba, haciendo uso de la definición, que una sucesión era convergente hacia cierto límite. También hemos demostrado que toda sucesión monótona y acotada es convergente, pero salvo en ...

Leer más »

Más sobre límite de sucesiones. Sucesiones parciales. Sucesiones monótonas

En un artículo anterior habíamos hablado de las sucesiones de números reales y del concepto de límite de una sucesión. También, en otro artículo, estuvimos viendo el concepto de sucesión acotada y algunas propiedades de las sucesiones convergentes. En este artículo vamos a completar nuestro estudio de las sucesiones. Diremos lo que es una sucesión parcial de una sucesión, definiremos ...

Leer más »

La existencia de los números irracionales

En las matemáticas de la Educación Secundaria Obligatoria se presentan los números irracionales como aquellos que no son racionales, es decir, aquellos que no se pueden poner en forma de fracción. Como es muy habitual hablar de la expresión decimal de una fracción (que es o bien decimal exacta o bien decimal periódica), se dice también de los irracionales que ...

Leer más »