Menu
¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Series infinitas de números reales. Series convergentes

Series infinitas de números reales.…

Las sucesiones de n&uacut...

La paradoja de Zenón

La paradoja de Zenón

El filósofo griego...

Prev Next

Operaciones con raíces. Radicales - 2

Operaciones con raíces. Radicales Operaciones con raíces. Radicales

Instrucciones:

Para practicar con estos ejercicios te recomiendo que los copies en tu cuaderno o en hojas aparte, donde debes intentar realizarlos. Una vez que hayas finalizado, comprueba las soluciones haciendo click en el lugar correspondiente. Cuando mires las soluciones, se aconseja hacer una lectura atenta de las observaciones que acompañan, a veces, a cada uno de los ejercicios resueltos.

Por cierto, son prácticamente idénticos a los de la relación número 1 de radicales. Repasa aquella primero, incluso con sus soluciones y observaciones. Así te será fácil hacer esta.

¡A trabajar!


Ejercicio 1. Calcula

a)  \(\displaystyle\left(\sqrt{3}\sqrt{x}\right)^2\)

b)  \(\displaystyle\left(5\sqrt{3x}\right)^3\)

c)  \(\displaystyle\left(\sqrt{2}-\sqrt{3}\right)^2\)

d)  \(\displaystyle\left(\sqrt{x}+\sqrt{3}\right)^2\)

e)  \(\displaystyle\left(\sqrt{x+y}-\sqrt{x+y}\right)\left(\sqrt{x+y}+\sqrt{x+y}\right)\)

f)  \(\displaystyle\left(\sqrt{5x}+\sqrt{2x}\right)\left(\sqrt{5x}-\sqrt{2x}\right)\)


Ejercicio 2. Extraer los factores posibles de los radicales siguientes:

a)  \(\displaystyle\sqrt{36a^2x^3y^4z^5}\)

b)  \(\displaystyle\sqrt[3]{24x^7y^5}\)

c)  \(\displaystyle\sqrt[4]{\frac{a^5b^6z^7}{64}}\)

d)  \(\displaystyle\sqrt[3]{\frac{54x^3}{a^3b^6}}\)


Ejercicio 3. Introducir dentro del radical y simplificar posteriormente:

a)   \(\displaystyle2x\sqrt{\frac{1}{x}}\)

b)  \(\displaystyle2\sqrt[3]{\frac{1}{16}}\)

c)  \(\displaystyle a^2xy\sqrt[3]{ax^2y^2}\)

d)  \(\displaystyle6x^2y\sqrt{\frac{y}{6x}}\)


Ejercicio 4. Efectuar los sigueintes productos reduciendo a índice común si fuera necesario y simplificar, si es posible, el resultado:

a)  \(\displaystyle\sqrt{2x}\cdot\sqrt{2xy}\cdot\sqrt{2xyz}\cdot\sqrt{2xy^2z^3}\)

b)  \(\displaystyle\sqrt{3}\cdot\sqrt[3]{9}\cdot\sqrt[4]{18}\)

c)  \(\displaystyle\sqrt{2x}\cdot\sqrt[4]{4x^3}\cdot\sqrt[6]{8x^5}\)

d)  \(\displaystyle\sqrt{ab}\cdot\sqrt[3]{a^2b}\cdot\sqrt[6]{a^5b^3}\)


Ejercicio 5. Calcular para que las expresiones queden, al final, de la forma \(\a\sqrt{b}):

a)  \(\displaystyle6\sqrt{5}+\sqrt{50}-2\sqrt{75}-\sqrt{125}\)

b)  \(\displaystyle7\sqrt{63}+4\sqrt{28}-\sqrt{343}+\sqrt{7}\)


Ejercicio 6. Racionalizar las expresiones siguientes y simplificar el resultado:

a)  \(\displaystyle\frac{5}{\sqrt{5}}\)

b)  \(\displaystyle\frac{1}{\sqrt[3]{2}}\)

c)  \(\displaystyle\frac{2+\sqrt{3}}{2-\sqrt{3}}\)

d)  \(\displaystyle\frac{5}{\sqrt{10}-\sqrt{5}}\)


Para más información sobre radicales y sus propiedades puedes ver la siguiente presentación sobre raíces, sus propiedades y operaciones con radicales.

volver arriba

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas