Menu
¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Series infinitas de números reales. Series convergentes

Series infinitas de números reales.…

Las sucesiones de n&uacut...

La paradoja de Zenón

La paradoja de Zenón

El filósofo griego...

Prev Next

Resolviendo ecuaciones e inecuaciones en las que aparece el valor absoluto

  • Publicado en ESO

Recordemos que el valor absoluto de un número real cualquiera \(x\) se define de la siguiente manera:

\[|x|=\begin{cases}x&\text{si}&x\geqslant0\\-x&\text{si}&x<0\end{cases}\]

En otro artículo hablábamos del valor absoluto y de sus propiedades, y en él ya se hizo referencia a la posibilidad de resolver algunas ecuaciones o inecuaciones utlizando estas propiedades. Aquí seremos más explícitos y resolveremos de hecho varias ecuaciones e inecuaciones concretas. En todo caso será bueno recordar que utilizaremos algunas de las propiedades del valor absoluto. Por supuesto, se da por hecho que se saben resolver ecuaciones e inecuaciones de primer y de segundo grado. En todo caso se recomienda la lectura de los siguientes artículos:

La ecuación con valor absoluto más sencilla es \(|x|=a\), donde \(a\) es un número real fijo mayor o igual que cero, pero arbitrario (si \(a<0\) la ecuación no tiene solución pues \(|x|\geqslant0,\,\forall x\in\mathbb{R}\)). Por la definición de valor absoluto, si \(x\geqslant0\), entonces \(|x|=x\) con lo que \(|x|=a\Rightarrow x=a\). Sin embargo, si \(x<0\), entonces \(|x|=-x\) con lo que \(|x|=a\Rightarrow -x=a\Rightarrow x=-a\). Hemos demostrado que \(|x|=a\Rightarrow\begin{cases}x=a\\x=-a\end{cases}\).

Así por ejemplo las soluciones de la ecuación |x|=3 son \(x=3\) y \(x=-3\).

Desde el punto de vista geométrico la ecuación \(|x|=a\) viene a decir que los únicos dos números reales cuya distancia al cero es igual a \(a\geqslant0\) son \(a\) y \(-a\).

La ecuación anterior se puede utilizar para resolver otras algo más complicadas.

Por ejemplo, sea la ecuación \(|3x-5|=8\). Usando lo que hemos demostrado anteriormente tenemos:

\[|3x-5|=8\Rightarrow\begin{cases}3x-5=8\Rightarrow3x=13\Rightarrow x=\frac{13}{3}\\3x-5=-8\Rightarrow3x=-3\Rightarrow x=-1\end{cases}\]

Resolvamos ahora la ecuación \(|x-1|=\dfrac{1}{|x+4|}\).

Multiplicando ambos miembros de la igualdad por \(|x+4|\) obtenemos la ecuación equivalente \(|x-1||x+4|=1\) y como el valor absoluto del producto es el producto de los valores absolutos tenemos también, equivalentemente

\[|(x-1)(x+4)|=1\Rightarrow|x^2+3x-4|=1\Rightarrow\begin{cases}x^2-3x-4=1\\x^2-3x-4=-1\end{cases}\Rightarrow\begin{cases}x^2-3x-5=0\\x^2-3x-3=0\end{cases}\Rightarrow\]

\[\displaystyle\Rightarrow\begin{cases}x=\frac{3\pm\sqrt{(-3)^2-4\cdot1\cdot(-5)}}{2}=\frac{3\pm\sqrt{29}}{2}\\x=\frac{3\pm\sqrt{(-3)^2-4\cdot1\cdot(-3)}}{2}=\frac{3\pm\sqrt{21}}{2}\end{cases}\]

Es interesante observar la representación gráfica de las soluciones que de esta ecuación hace WolframAlpha.

Para resolver inecuaciones en las que aparecen valores absolutos usaremos, entre otras, la siguiente propiedad del valor absoluto:

\[|x|\leqslant a\Leftrightarrow-a\leqslant x\leqslant a\Leftrightarrow x\in[-a,a]\]

Es evidente que esta propiedad también se cumple si la desigualdad es estricta:

\[|x|<a\Leftrightarrow-a<x<a\Leftrightarrow x\in(-a,a)\]

De lo anterior se deduce que también es cierto que

\[|x|\geqslant a\Leftrightarrow x\leqslant-a\ \text{o}\ x\geqslant a\Leftrightarrow x\in(-\infty,a]\cup[a,+\infty)\]

\[|x|>a\Leftrightarrow x<-a\ \text{o}\ x>a\Leftrightarrow x\in(-\infty,a)\cup(a,+\infty)\]

Utilizando estas propiedades podemos resolver, por ejemplo, la inecuación \(|2x-7|\leqslant3\). Veámoslo.

\[|2x-7|\leqslant3\Leftrightarrow-3\leqslant2x-7\leqslant3\Leftrightarrow4\leqslant2x\leqslant10\Leftrightarrow2\leqslant x\leqslant5\Leftrightarrow x\in[2,5]\]

Hacemos hincapié en el interés que tiene observar la solución desde el punto de vista gráfico.

Naturalmente, si la inecuación fuera \(|2x-7|>3\) la solución sería \(x\in(-\infty,2)\cup(5,+\infty)\).

Resolvamos ahora la inecuación \(\left|\dfrac{1}{2}-\dfrac{x}{3}\right|<2\), en la cual hemos de aplicar la propiedad mencionada y luego proceder con especial cuidado.

\[\left|\frac{1}{2}-\frac{x}{3}\right|<2\Leftrightarrow-2<\frac{1}{2}-\frac{x}{3}<2\Leftrightarrow-2-\frac{1}{2}<-\frac{x}{3}<2-\frac{1}{2}\Leftrightarrow-\frac{5}{2}<-\frac{x}{3}<\frac{3}{2}\Leftrightarrow\]

Ahora recordemos que si multiplicamos o dividimos los dos miembros de una desigualdad por un mismo número negativo, la desigualdad cambia de sentido, con lo que, en este caso, multiplicando todos los miembros por \(-3\), tenemos

\[\Leftrightarrow\frac{15}{2}>x>-\frac{9}{2}\Leftrightarrow-\frac{9}{2}<x<\frac{15}{2}\Leftrightarrow x\in\left(-\frac{9}{2},\frac{15}{2}\right)\]

Otra vez merece la pena observa la solución de la inecuación anterior desde el punto de vista gráfico.

Por supuesto, si la inecuación que tuviéramos que resolver fuera \(\left|\dfrac{1}{2}-\dfrac{x}{3}\right|\geqslant2\), la solución vendría dada por \(x\in\left(-\infty,-\dfrac{9}{2}\right]\cup\left[\dfrac{9}{2},+\infty\right)\).

Hay ocasiones en las que no queda más remedio que echar mano de la definición para resolver ciertas ecuaciones o inecuaciones en las que aparecen valores absolutos. Veamos un par de ejemplos.

Resolver la ecuación \(2|3-2x|+|x-2|=x\).

Por un lado tenemos que

\[|3-2x|=\begin{cases}3-2x&\text{si}&3-2x\geqslant0\\-(3-2x)&\text{si}&3-2x<0\end{cases}=\begin{cases}3-2x&\text{si}&x\leqslant\frac{3}{2}\\2x-3&\text{si}&x>\frac{3}{2}\end{cases}\]

Y por otro lado tenemos

\[|x-2|=\begin{cases}x-2&\text{si}&x-2\geqslant0\\-(x-2)&\text{si}&x-2<0\end{cases}=\begin{cases}x-2&\text{si}&x\geqslant2\\2-x&\text{si}&x<2\end{cases}\]

Como se puede observar, hay dos puntos digamos "críticos", el \(\frac{3}{2}\) y el \(2\). Podemos pues dividir la recta real en tres intervalos y considerar tres casos para resolver nuestra ecuación.

Si \(x\in\left(-\infty,\frac{3}{2}\right)\) la ecuación \(2|3-2x|+|x-2|=x\) se convierte en \(2(3-2x)+2-x=x\), ecuación de primer grado: \(6-4x+2-x=x\Rightarrow-6x=-8\Rightarrow x=\frac{4}{3}\). Como \(\frac{4}{3}\in\left(-\infty,\frac{3}{2}\right)\), entonces \(x=\frac{4}{3}\) es solución de la ecuación.

Si \(x\in\left(\frac{3}{2},2\right)\) la ecuación \(2|3-2x|+|x-2|=x\) se convierte en \(2(2x-3)+2-x=x\), con lo que \(4x-6+2-x=x\Rightarrow 2x=4\Rightarrow x=2\).

Si \(x\in(2,+\infty)\) la ecuación \(2|3-2x|+|x-2|=x\) se convierte en \(2(2x-3)+x-2=x\), con lo que \(4x-6+x-2=x\Rightarrow 4x=8\Rightarrow x=2\).

Cuando una de las soluciones coincide con uno de los puntos críticos debemos decidir si es solución sustituyendo directamente en la ecuación:

\[2|3-2\cdot2|+|2-2|=2|3-4|+|0|=2|-1|+0=2\cdot1=2\]

Observamos que la ecuación se cumple para \(x=2\), con lo que este valor es solución de la ecuación. Resumiendo, las soluciones de la ecuación \(2|3-2x|+|x-2|=x\) son \(x=\frac{4}{3}\) y \(x=2\).

Resolvamos por último la inecuación de la imagen que encabeza este artículo: \(|4-x|+|2x-5|>7-x\). Para ello procederemos como en el ejercicio anterior.

Por un lado

\[|4-x|=\begin{cases}4-x&\text{si}&4-x\geqslant0\\-(4-x)&\text{si}&4-x<0\end{cases}=\begin{cases}4-x&\text{si}&x\leqslant4\\x-4&\text{si}&x>4\end{cases}\]

Por otro lado

\[|2x-5|=\begin{cases}2x-5&\text{si}&2x-5\geqslant0\\-(2x-5)&\text{si}&2x-5<0\end{cases}=\begin{cases}2x-5&\text{si}&x\geqslant\frac{5}{2}\\5-2x&\text{si}&x<\frac{5}{2}\end{cases}\]

Decidamos ahora intervalo por intervalo teniendo en cuenta que ahora los puntos críticos son \(\frac{5}{2}\) y \(4\).

Si \(x\in\left(-\infty,\frac{5}{2}\right)\), la inecuación queda así: \(4-x+5-2x>7-x\). Resolviéndola tenemos \(-2x>-2\Rightarrow x<1\Rightarrow x\in(-\infty,1)\). Como \(\left(-\infty,\frac{5}{2}\right)\cap(-\infty,1)=(-\infty,1)\), entonces el intervalo \((-\infty,1)\) es solución de la inecuación.

Si \(x\in\left(\frac{5}{2},4\right)\), la inecuación queda así: \(4-x+2x-5>7-x\). Resolviéndola tenemos \(2x>8\Rightarrow x>4\Rightarrow x\in(4,+\infty)\). Como \(\left(\frac{5}{2},4\right)\cap(4,+\infty)=\emptyset\), este caso no aporta soluciones a nuestra inecuación.

Finalmente, si \(x\in(4,+\infty)\), la inecuación es \(x-4+2x-5>7-x\) que, resolviéndola, queda \(4x>16\Rightarrow x>4\Rightarrow x\in(4,+\infty)\). Por tanto, en este caso el intervalo \((4,+\infty)\) es solución de la inecuación.

Resumiendo, las solución de la inecuación \(|4-x|+|2x-5|>7-x\) la podemos escribir así: \((-\infty,1)\cup(4,+\infty)\).

Leer más ...

Sistemas de dos ecuaciones lineales de primer grado con tres incógnitas

Un sistema de dos ecuaciones lineales de primer grado con tres incógnitas tiene la siguiente forma

\[\left\{ \begin{array}{l}
Ax + By + Cz + D = 0\\
A'x + B'y + C'z + D = 0
\end{array} \right.\qquad(1)\]

Ya sabemos que una ecuación lineal de primer grado con tres incógnitas es, desde el punto de vista geométrico, un plano en el espacio. En este caso tenemos dos en su forma general:

\[\pi  \equiv Ax + By + Cz + D = 0\quad \text{;}\quad \pi ' \equiv A'x + B'y + C'z + D' = 0\]

Las posibles posiciones relativas de dos planos en el espacio son tres: coincidentes, paralelos y secantes. Utilizaremos el teorema de Rouché para interpretar las soluciones del sistema e identificarlas con la posición relativa correspondiente.

Sean pues, respectivamente,

\[\left( {\begin{array}{*{20}{c}}
A&B&C\\
{A'}&{B'}&{C'}
\end{array}} \right)\quad\text{;}\quad\left( {\begin{array}{*{20}{c}}
A&B&C&{ - D}\\
{A'}&{B'}&{C'}&{ - D'}
\end{array}} \right)\]

la matriz de los coeficientes y la matriz ampliada del sistema (1). Como hay tres incógnitas escribiremos \(n=3\). Veamos ahora los casos que se pueden presentar.

Caso 1

\[{\rm{rango}}\left( {\begin{array}{*{20}{c}}
A&B&C\\
{A'}&{B'}&{C'}
\end{array}} \right) = {\rm{rango}}\left( {\begin{array}{*{20}{c}}
A&B&C&{ - D}\\
{A'}&{B'}&{C'}&{ - D'}
\end{array}} \right) = 1 < 3 = n\]

El sistema es compatible indeterminado. Es decir, existen infinitas soluciones. En este caso las filas son proporcionales, con lo que los dos planos serán coincidentes. La condición pues para que esto ocurra es

\[\pi  \equiv \pi ' \Leftrightarrow \frac{A}{{A'}} = \frac{B}{{B'}} = \frac{C}{{C'}} = \frac{D}{{D'}}\]

Caso 2

\[{\rm{rango}}\left( {\begin{array}{*{20}{c}}
A&B&C\\
{A'}&{B'}&{C'}
\end{array}} \right) = 1 \ne {\rm{rango}}\left( {\begin{array}{*{20}{c}}
A&B&C&{ - D}\\
{A'}&{B'}&{C'}&{ - D'}
\end{array}} \right) = 2\]

El sistema no tiene solución, con lo que los planos serán paralelos. En este caso las filas de la matriz de los coeficientes son proporcionales, pero no lo son las de la matriz ampliada. Por tanto es fácil deducir que la condición para que los dos planos sean paralelos es la siguiente:

\[\pi\, |\,|\,\pi ' \Leftrightarrow \frac{A}{{A'}} = \frac{B}{{B'}} = \frac{C}{{C'}} \ne \frac{D}{{D'}}\]

Caso 3

\[{\rm{rango}}\left( {\begin{array}{*{20}{c}}
A&B&C\\
{A'}&{B'}&{C'}
\end{array}} \right) = {\rm{rango}}\left( {\begin{array}{*{20}{c}}
A&B&C&{ - D}\\
{A'}&{B'}&{C'}&{ - D'}
\end{array}} \right) = 2 < 3 = n\]

El sistema vuelve a ser compatible indeterminado. Es decir, hay infinitas soluciones. La única posibilidad es que estas soluciones, al ser el rango dos y no ser las filas proporcionales, estén sobre la recta donde se cortan ambos planos. En este caso los planos son secantes según una recta: \(\pi  \cap \pi ' = r\). Las soluciones, o lo que es lo mismo, la recta de corte de ambos planos, se puede obtener hallando las soluciones del sistema (que dependerán de un parámetro). De este modo obtendríamos las ecuaciones paramétricas de la recta. De hecho, si los planos son secantes según una recta \(r\), al conjunto de las dos ecuaciones del sistema se les llama ecuaciones implícitas de la recta:

\[r \equiv \left\{ \begin{array}{l}
Ax + By + Cz + D = 0\\
A'x + B'y + C'z + D = 0
\end{array} \right.\]

Veamos un ejemplo de este último caso.

Sean los planos \(\pi  \equiv 2x - 3y + z - 1 = 0\) y \(\pi ' \equiv  - x + y - 4z + 1 = 0\). El sistema formado por ambos es:

\[\left\{ \begin{array}{l}
2x - 3y + z - 1 = 0\\
 - x + y - 4z + 1 = 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
2x - 3y + z = 1\\
 - x + y - 4z =  - 1
\end{array} \right.\]

Es muy fácil darse cuenta de que

\[{\rm{rango}}\left( {\begin{array}{*{20}{c}}
2&{ - 3}&1\\
{ - 1}&1&{ - 4}
\end{array}} \right) = {\rm{rango}}\left( {\begin{array}{*{20}{c}}
2&{ - 3}&1&1\\
{ - 1}&1&{ - 4}&{ - 1}
\end{array}} \right) = 2\]

pues hay un menor de orden dos distinto de cero:

\[\left| {\begin{array}{*{20}{c}}
2&{ - 3}\\
{ - 1}&1
\end{array}} \right| = 2 - 3 =  - 1 \ne 0\]

Si llamamos \(z=\lambda\), el sistema lo podemos escribir así:

\[\left\{ \begin{array}{l}
2x - 3y = 1 - \lambda \\
 - x + y =  - 1 + 4\lambda
\end{array} \right.\]

cuyas soluciones son, aplicando la regla de Cramer:

\[x = \frac{{\left| {\begin{array}{*{20}{c}}
{1 - \lambda }&{ - 3}\\
{ - 1 + 4\lambda }&1
\end{array}} \right|}}{{ - 1}} = \frac{{1 - \lambda  - \left( {3 - 12\lambda } \right)}}{{ - 1}} = \frac{{ - 2 + 11\lambda }}{{ - 1}} = 2 - 11\lambda\]

\[y = \frac{{\left| {\begin{array}{*{20}{c}}
2&{1 - \lambda }\\
{ - 1}&{ - 1 + 4\lambda }
\end{array}} \right|}}{{ - 1}} = \frac{{ - 2 + 8\lambda  - \left( { - 1 + \lambda } \right)}}{{ - 1}} = \frac{{ - 1 + 7\lambda }}{{ - 1}} = 1 - 7\lambda\]

Estas soluciones las podemos escribir así:

\[\left( {x,y,z} \right) = \left( {2 - 11\lambda ,1 - 7\lambda ,\lambda } \right) = \left( {2,1,0} \right) + \lambda \left( { - 11,7,1} \right)\]

que no es otra cosa que la ecuación vectorial de la recta que pasa por el punto \(P\left( {2,1,0} \right)\) y tiene vector director \(\vec u = \left( { - 11,-7,1} \right)\).

En la siguiente figura se pueden apreciar los dos planos y la recta donde se cortan ambos.

sistemas03


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

La ecuación lineal de primer grado con tres incógnitas. El plano en el espacio afín

En un artículo anterior habíamos hablado sobre la ecuación lineal de primer grado con dos incógnitas y sobre la recta en el plano afín.

Esas ideas se pueden extender al espacio en tres dimensiones. Así que vamos allá.

Ya sabemos que una ecuación lineal es una ecuación polinómica de grado uno con una o varias incógnitas.

Si la ecuación tiene tres incógnitas la ecuación adopta la forma

\[ax + by + cz + d = 0\]

donde \(a\), \(b\), \(c\) y \(d\) son número reales, y las incógnitas son \(x\), \(y\), \(z\). Llamando, por ejemplo, \(x=\lambda\), \(y=\mu\), podemos despejar la incógnita \(z\):

\[ax + by + cz + d = 0 \Rightarrow cz =  - a\lambda  - b\mu  - d \Rightarrow z =  - \frac{a}{c}\lambda  - \frac{b}{c}\mu  - \frac{d}{c}\]

El hecho de llamar \(\lambda\) a la incógnita \(x\) y \(\mu\) a la incógnita \(y\), viene a decir que las incógnitas \(x\) e \(y\) pueden tomar cualquier valor real, a los que llamaremos parámetros. Por tanto, la incógnita \(z\) depende del valor que le demos a los parámetros \(\lambda\) y \(\mu\).

Podemos escribir las soluciones en forma de terna ordenada, de la siguiente manera:

\[\left( {x,y,z} \right) = \left( {\lambda ,\mu , - \frac{a}{c}\lambda  - \frac{b}{c}\mu  - \frac{d}{c}} \right)\]

Por ejemplo, sea la ecuación lineal de primer grado con tres incógnitas \(x - 2y + 3z - 5 = 0\). En este caso \(a=1\), \(b=-2\), \(c=3\) y \(d=-5\). Por tanto, las soluciones son de la forma

\[\left( {x,y,z} \right) = \left( {\lambda ,\mu , - \frac{1}{3}\lambda  - \frac{{ - 2}}{3}\mu  - \frac{{ - 5}}{3}} \right) = \left( {\lambda ,\mu , - \frac{1}{3}\lambda  + \frac{2}{3}\mu  + \frac{5}{3}} \right)\]

Ahora, si damos valores a \(\lambda\) y a \(\mu\) podemos ir obteniendo los valores de \(z\). Por ejemplo, si \(\lambda=5\) y \(\mu=0\), entonces

\[z =  - \frac{1}{3}\lambda  + \frac{2}{3}\mu  + \frac{5}{3} =  - \frac{1}{3} \cdot 5 + \frac{2}{3} \cdot 0 + \frac{5}{3} =  - \frac{5}{3} + \frac{5}{3} = 0\]

con lo que una solución es \(\left( {x,y,z} \right) = \left( {5,0,0} \right)\).

Procediendo de manera similar podemos obtener las ternas de soluciones siguientes:

\[\lambda=0\ ,\ \mu=0\Rightarrow \left( {x,y,z} \right) = \left( {0,0,\frac{5}{3}} \right)\]

\[\lambda=0\ ,\ \mu=-\frac{5}{2}\Rightarrow \left( {x,y,z} \right) = \left( {0,-\frac{5}{2},0} \right)\]

\[\lambda=2\ ,\ \mu=2\Rightarrow \left( {x,y,z} \right) = \left( {2,2,\frac{7}{3}} \right)\]

\[\lambda=-3\ ,\ \mu=-1\Rightarrow \left( {x,y,z} \right) = \left( {-3,-1,-2} \right)\]

Podemos representar incluso los valores anteriores usando unos ejes de coordenadas, es decir, fijando un sistema de referencia afín tridimensional (el espacio afín). Este sistema es el habitual, es decir, \(R = \left\{ {O,\,\,\left\{ {{\rm{i}},{\rm{j}},{\rm{k}}} \right\}} \right\}\), donde \({\rm{i}} = \left( {1,0,0} \right)\), \({\rm{j}} = \left( {0,1,0} \right)\), \({\rm{k}} = \left( {0,0,1} \right)\) (ya se habló sobre este sistema de referencia en un artículo anterior, dedicado a los sistemas de dos ecuaciones lineales de primer grado con dos incógnitas). Pues bien, todas las ternas que son soluciones de la ecuación \(x - 2y + 3z - 5 = 0\) están situadas en un mismo plano \(\pi\), con lo que llamaremos

\[\pi\equiv x-2y+3z-5=0\]

Lo podemos apreciar en la figura siguiente, en la que incluso se observa el punto del plano \(\left( { - 3, - 1,2} \right)\), que también representa al vector de las mismas coordenadas.

plano01

 Las soluciones de una ecuación lineal de primer grado con tres incógnitas, \(ax + by + cz + d = 0\), también las podemos escribir así:

\[\left( {x,y,z} \right) = \left( {\lambda ,\mu , - \frac{a}{c}\lambda  - \frac{b}{c}\mu  - \frac{d}{c}} \right) = \left( {\lambda ,0, - \frac{a}{c}\lambda } \right) + \left( {0,\mu , - \frac{b}{c}\mu } \right) + \left( {0,0, - \frac{d}{c}} \right) \Rightarrow\]

\[\Rightarrow \left( {x,y,z} \right) = \lambda \left( {1,0, - \frac{a}{c}} \right) + \mu \left( {0,1, - \frac{b}{c}} \right) + \left( {0,0, - \frac{d}{c}} \right)\]

Siguiendo con el ejemplo anterior podemos escribir las soluciones de la ecuación \(x - 2y + 3z - 5 = 0\) del siguiente modo:

\[\left( {x,y,z} \right) = \lambda \left( {1,0, - \frac{1}{3}} \right) + \mu \left( {0,1,\frac{2}{3}} \right) + \left( {0,0,\frac{5}{3}} \right)\]

Geométricamente, la expresión anterior indica que el plano \(\pi\equiv x-2y+3z-5=0\) es el plano paralelo al plano que contiene a los vectores \(\left( {1,0, - \dfrac{1}{3}} \right)\), \(\left( {0,1,\dfrac{2}{3}} \right)\) y que pasa por el punto \(\left( {0,0,\dfrac{5}{3}} \right)\). Dicho de otro modo: todos los puntos de este plano son los extremos de los vectores que se obtienen al sumar cualquier vector proporcional al vector \(\left( {1,0, - \dfrac{1}{3}} \right)\) con cualquier vector proporcional al vector \(\left( {0,1,\dfrac{2}{3}} \right)\), y con el vector \(\left( {0,0,\dfrac{5}{3}} \right)\).

De hecho, si tomamos \(\lambda=1\) y \(\mu=1\), tenemos que un punto del plano es

\[\left( {x,y,z} \right) = 1\left( {1,0, - \frac{1}{3}} \right) + 1\left( {0,1,\frac{2}{3}} \right) + \left( {0,0,\frac{5}{3}} \right) = \left( {1,1,2} \right)\]

No es fácil imaginar esta situación en el espacio, pero con ayuda de alguna aplicación que represente figuras en tres dimensiones podemos hacernos una idea. En este caso, como en la imagen anterior, hemos utilizado Geogebra. En la siguiente figura se observa como nuestro plano \(\pi  \equiv x - 2y + 3z - 5 = 0\), es paralelo al plano que contiene a \(\left( {1,0, - \dfrac{1}{3}} \right)\) y a \(\left( {0,1,\dfrac{2}{3}} \right)\) y además pasa por el punto \(\left( {0,0,\dfrac{5}{3}} \right)\). De hecho también se aprecia con claridad que el punto \(\left( {1,1,2} \right)\), generado por las soluciones correspondientes a \(\lambda=1\) y \(\mu=1\), pertenece al plano \(\pi\).

plano02

Analizando lo anterior llegamos a una conclusión: un plano viene completamente determinado por dos vectores con distinta dirección (linealmente independientes) y un punto. O lo que es lo mismo, existe un único plano que pasa por un punto dado y en dos direcciones determinadas. A los vectores que determinan el plano se le llaman vectores de dirección o vectores directores del plano.

Generalicemos esta situación desde el punto de vista vectorial. Para ello llamaremos \(O\) al origen de coordenadas \(A\) a un punto cualquiera del espacio, \(\overrightarrow {OA} \) al vector de posición con origen en \(O\) y extremo en \(A\), y \(\vec u\) y \(\vec v\) a dos vectores con distinta dirección. La ecuación del plano que pasa por el punto \(A\) con la dirección de los vectores \(\vec u\) y \(\vec v\) viene dada por

\[\overrightarrow {OX}  = \overrightarrow {OA} \, + \lambda \vec u + \mu \vec v\,,\,\,\lambda ,\mu  \in \mathbb{R}\]

donde \(\overrightarrow {OX} \) es el vector de posición con origen en \(O\) generado al dar valores a los parámetros \(\lambda\) y \(\mu\).

Hemos de insistir en que las coordenadas de los vectores están escritas en base al sistema de referencia \(R = \left\{ {O,\,\,\left\{ {{\rm{i}},{\rm{j}},{\rm{k}}} \right\}} \right\}\) del que hemos hablado anteriormente. Es decir, hemos instalado en el espacio unos ejes de coordenadas: el eje \(X\) para la anchura, el eje \(Y\) para la profundidad, y el eje \(Z\) para la altura. Así, cuando hablamos de tomar el vector \(\vec e = \left( {1,1,2} \right)\) , y lo visualizamos en el espacio como un segmento orientado desde el origen de coordenadas \(O = \left( {0,0,0} \right)\) hasta el extremo en el punto de coordenadas \(\left( {1,1,2} \right)\), lo que estamos haciendo realmente es la siguiente operación:

\[\left( {1,1,2} \right) = 1\left( {1,0,0} \right) + 1\left( {0,1,0} \right) + 2\left( {0,0,1} \right) = 1 \cdot {\rm{i}} + 1 \cdot {\rm{j}} + 2 \cdot {\rm{k}}\]

O lo que es lo mismo, el vector \(\vec e = \left( {1,1,2} \right)\) es aquel que tiene una unidad de anchura, otra de profundad y dos unidades de altura.

Los vectores \({\rm{i}} = \left( {1,0,0} \right)\), \({\rm{j}} = \left( {0,1,0} \right)\), \({\rm{k}} = \left( {0,0,1} \right)\) situados respectivamente sobre el eje \(X\), sobre el eje \(Y\) y sobre el eje \(Z\), tienen módulo \(1\) y son perpendiculares. Se dice que los tres vectores son ortonormales o que forman una base ortonormal del espacio. Además cualquier vector \(\left( {a,b,c} \right)\) lo podemos escribir así:

\[\left( {a,b,c} \right) = a\left( {1,0,0} \right) + b\left( {0,1,0} \right) + c\left( {0,0,1} \right) = a \cdot {\rm{i}} + b \cdot {\rm{j}} + c \cdot {\rm{k}}\]

La igualdad anterior expresa que todo vector del espacio, o lo que es lo mismo, todo el espacio, se puede generar a partir de los vectores \({\rm{i}} = \left( {1,0,0} \right)\), \({\rm{j}} = \left( {0,1,0} \right)\), \({\rm{k}} = \left( {0,0,1} \right)\). Se dice que todo vector del espacio es una combinación lineal de \({\rm{i}} = \left( {1,0,0} \right)\), \({\rm{j}} = \left( {0,1,0} \right)\), \({\rm{k}} = \left( {0,0,1} \right)\). Estos vectores, junto con el origen de coordenadas \(O\) forman el sistema de referencia ortonormal \(R = \left\{ {O,\,\,\left\{ {{\rm{i}},{\rm{j}},{\rm{k}}} \right\}} \right\}\).

La geometría en el espacio afín empieza de este modo. Se considera un sistema de referencia afín ortonormal \(R = \left\{ {O,\,\,\left\{ {{\rm{i}},{\rm{j}},{\rm{k}}} \right\}} \right\}\). Se sabe que todo vector que se apoye en \(O\) se puede poner como combinación lineal de \({\rm{i}}\), de \({\rm{j}}\) y de \({\rm{k}}\):

\[X = \overrightarrow {OX}  = {x_1}{\rm{i}} + {x_2}{\rm{j}} + {x_3}{\rm{k}} = \left( {{x_1},{x_2},{x_3}} \right)\]

Por tanto un vector cualquiera del espacio lo podemos "atrapar" en nuestro sistema de referencia. Todo vector \(\vec e\) del espacio tiene un origen \(A\left( {{a_1},{a_2},{a_3}} \right)\) y un extremo \(B\left( {{b_1},{b_2},{b_3}} \right)\), y por tanto \(\vec e = \overrightarrow {AB}\). Además:

\[\overrightarrow {OB}  = \overrightarrow {OA}  + \overrightarrow {AB}  \Rightarrow \overrightarrow {AB}  = \overrightarrow {OB}  - \overrightarrow {OA}  \Rightarrow\]

\[\Rightarrow \overrightarrow {AB}  = \left( {{b_1},{b_2},{b_3}} \right) - \left( {{a_1},{a_2},{a_3}} \right) \Rightarrow \overrightarrow {AB}  = \left( {{b_1} - {a_1},{b_2} - {a_2},{b_3} - {a_3}} \right)\]

plano03

Por ejemplo, el vector \(\vec e\) que une el punto \(P\left( {3\,, - \,1,2} \right)\) con el punto \(Q\left( {2\,, - \,3, - 1} \right)\) es

\[\vec e = \overrightarrow {PQ}  = \left( {2 - 3, - 3 - \left( { - 1} \right), - 1 - 2} \right) = \left( { - 1, - 2, - 3} \right)\]

Nuestro vector \(\vec e\) acaba de ser escrito en base a nuestro sistema de referencia. Hay infinitos vectores en el espacio con el mismo módulo, dirección y sentido, pero sólo uno que se apoya en el origen \(O\) de nuestro sistema de referencia. Al conjunto de todos los vectores con el mismo módulo, dirección y sentido se le llama vector libre del espacio.

Con las consideraciones anteriores la ecuación vectorial del plano que pasa por el punto \(A\) con la dirección de los vectores \(\vec u\) y \(\vec v\), \(\overrightarrow {OX}  = \overrightarrow {OA} \, + \lambda \vec u + \mu \vec v\,,\,\,\lambda ,\,\,\mu  \in \mathbb{R}\), adquiere todo su sentido.

Si la ecuación vectorial la expresamos en coordenadas tenemos:

\[\left( {x,y,z} \right) = \left( {{a_1},{a_2},{a_3}} \right) + \lambda \left( {{u_1},{u_2},{u_3}} \right) + \mu \left( {{v_1},{v_2},{v_3}} \right) \Rightarrow\]

\[\Rightarrow \left( {x,y,z} \right) = \left( {{a_1} + \lambda {u_1} + \mu {v_1},{a_2} + \lambda {u_2} + \mu {v_2},{a_3} + \lambda {u_3} + \mu {v_3}} \right)\]

Igualando coordenadas:

\[\left\{ \begin{array}{l}
x = {a_1} + \lambda {u_1} + \mu {v_1}\\
y = {a_2} + \lambda {u_2} + \mu {v_2}\\
z = {a_3} + \lambda {u_3} + \mu {v_3}
\end{array} \right.\]

Las ecuaciones anteriores reciben el nombre de ecuaciones paramétricas del plano. Estas ecuaciones las podemos ver como un sistema de tres ecuaciones con dos incógnitas: \(\lambda\) y \(\mu\).

\[\left\{ \begin{array}{l}
\lambda {u_1} + \mu {v_1} = x - {a_1}\\
\lambda {u_2} + \mu {v_2} = y - {a_2}\\
\lambda {u_3} + \mu {v_3} = z - {a_3}
\end{array} \right.\]

Si de este sistema eliminamos los parámetros \(\lambda\) y \(\mu\) obtenemos la ecuación general o implícita del plano, que será una ecuación lineal de primer grado con tres incógnitas:

\[Ax + By + Cz + D = 0\]

Veamos con un ejemplo cómo eliminar los parámetros.

Supongamos que queremos hallar la ecuación general del plano que pasa por el punto \(A\left( {2,3,5} \right)\) y es paralelo a los vectores \(\vec u = \left( { - 1, - 2, - 3} \right)\), \(\vec v = \left( {1,3,5} \right)\).

Sus ecuaciones paramétricas serán:

\[\left\{ \begin{array}{l}
x = 2 - \lambda  + \mu \\
y = 3 - 2\lambda  + 3\mu \\
z = 5 - 3\lambda  + 5\mu
\end{array} \right.\]

Y de aquí:

\[\left\{ \begin{array}{l}
 - \lambda  + \mu  = x - 2\\
 - 2\lambda  + 3\mu  = y - 3\\
 - 3\lambda  + 5\mu  = z - 5
\end{array} \right.\]

Consideremos que las incógnitas son \(\lambda\) y \(\mu\) y apliquemos el método de Gauss para resolver el sistema:

\[\left( {\begin{array}{*{20}{c}}
{ - 1}&1&{x - 2}\\
{ - 2}&3&{y - 3}\\
{ - 3}&5&{z - 5}
\end{array}} \right)\longrightarrow\left( {\begin{array}{*{20}{c}}
{ - 1}&1&{x - 2}\\
0&1&{y - 2x + 1}\\
0&2&{z - 3x + 1}
\end{array}} \right)\longrightarrow\left( {\begin{array}{*{20}{c}}
{ - 1}&1&{x - 2}\\
0&1&{y - 2x + 1}\\
0&0&{x - 2y + z - 1}
\end{array}} \right)\]

De lo anterior se deduce, para que el sistema tenga soluciones (precisamente las soluciones son todos los puntos del plano), que \(x - 2y + z - 1 = 0\), justamente la ecuación general o implícita del plano.

Sin hacer el último paso en el método de Gauss también se obtiene lo mismo. Las dos últimas ecuaciones asociadas son

\[\left\{ \begin{array}{l}
\mu  = y - 2x + 1\\
2\mu  = z - 3x + 1
\end{array} \right.\]

y de aquí se obtiene, por igualación, que

\[y - 2x + 1 = \frac{{z - 3x + 1}}{2} \Rightarrow 2y - 4x + 2 = z - 3x + 1 \Rightarrow x - 2y + z - 1 = 0\]


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma

\[\left\{ \begin{array}{l}
Ax + By + C = 0\\
A'x + B\,'y + C' = 0
\end{array} \right.\quad(1)\]

Ya sabemos que una ecuación lineal de primer grado con dos incógnitas es, desde el punto de vista geométrico, una recta en el plano. En este caso tenemos dos en su forma general:

\[r \equiv Ax + By + C = 0\quad\text{;}\quad  s \equiv A'x + B\,'y + C' = 0\]

Las posibles posiciones relativas de dos rectas en el plano son tres: coincidentes, paralelas y secantes.

Si son coincidentes es porque una recta es la misma que la otra salvo un factor numérico, es decir,

\[Ax + By + C = k\left( {A'x + B\,'y + C'} \right) = 0 \Rightarrow Ax + By + C = kA'x + kB\,'y + kC' = 0\,\,,\,\,k \in \mathbb{R}\]

De aquí se deduce que \(A = kA'\,\,,\,\,B = kB\,'\,\,,\,\,C = kC'\) y despejando \(k\) obtenemos una condición para que las dos rectas coincidan:

\[r \equiv s \Leftrightarrow \frac{A}{{A'}} = \frac{B}{{B\,'}} = \frac{C}{{C'}}\]

Si las dos rectas son paralelas tienen la misma dirección, con lo que los vectores directores de \(r\) y \(s\) son iguales o proporcionales. Es decir, llamando \(\vec u\) al vector director de \(r\), y \(\vec v\) al vector director de \(s\), tenemos que \(\vec u = k\vec v\), donde \(k\) es un número real. Pero recordemos que los vectores directores se podían obtener fácilmente de la ecuación general de la recta: \(\vec u = \left( { - B,A} \right)\) y \(\vec v = \left( { - B\,',A'} \right)\), con lo que:

\[\vec u = k\vec v \Leftrightarrow \left( { - B,A} \right) = k\left( { - B\,',A'} \right) \Leftrightarrow \left( { - B,A} \right) = \left( { - kB\,',kA'} \right) \Leftrightarrow\]

\[\Leftrightarrow \left\{ \begin{array}{l}
- B = - kB\,'\\
A = kA'
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
k = \frac{B}{{B\,'}}\\
k = \frac{A}{{A'}}
\end{array} \right. \Leftrightarrow \frac{A}{{A'}} = \frac{B}{{B\,'}}\]

Así pues para que dos rectas sean paralelas tenemos la siguiente condición:

\[r\,|\,|\,s \Leftrightarrow \frac{A}{{A'}} = \frac{B}{{B\,'}} \ne \frac{C}{{C'}}\]

En este caso el sistema \((1)\) no tienen ninguna solución (claro: dos rectas paralelas no tienen ningún punto en común, no se cortan en ningún punto).

Por último, si las dos rectas son secantes, han de tener distinta dirección, con lo que sus vectores directores no serán proporcionales. Esto nos lleva a la siguiente condición:

\[r \cap s = \left\{ P \right\} \Leftrightarrow \frac{A}{{A'}} \ne \frac{B}{{B\,'}}\]

En este caso el sistema \((1)\) tienen una única solución. Esta solución es el punto de corte de las rectas \(r\) y \(s\): \(P\left( {a,b} \right)\).

Veamos un ejemplo.

Consideremos el sistema de ecuaciones \(\displaystyle\left\{ \begin{array}{l}
2x - 3y - 7 = 0\\
- 5x - y + 3 = 0
\end{array} \right.\). Este sistema está formado por las rectas \(r \equiv 2x - 3y - 7 = 0\) y \(s \equiv - 5x - y + 3 = 0\). Como tenemos que \(\dfrac{2}{{ - 5}} \ne \dfrac{{ - 3}}{{ - 1}}\), entonces las rectas son secantes. Si queremos saber el punto de corte basta resolver el sistema. Por reducción es muy sencillo. Multiplicando la segunda ecuación por \(-3\) tenemos: \(\displaystyle\left\{ \begin{array}{l}
2x - 3y - 8 = 0\\
15x + 3y - 9 = 0
\end{array} \right.\) y sumando ambas ecuaciones obtenemos \(17x - 17 = 0 \Rightarrow x = 1\). Sustituyendo en la primera ecuación podemos despejar \(y\): \(2 - 3y - 8 = 0 \Rightarrow - 3y - 6 = 0 \Rightarrow y = - 2\). Entonces el punto de corte de las rectas es \(P\left( {1, - 2} \right)\).

sistemas01

Puede que ahora sea un buen momento de hablar de independencia lineal. Es un concepto muy sencillo. Para ello vamos a pensar en dimensión tres, en un espacio tridimensional como en el que vivimos. Es decir, vamos a fijar un sistema de referencia afín donde cada punto y cada vector tiene tres coordenadas. Este sistema de referencia afín lo podemos escribir así: \(R = \left\{ {O\,,\,\left\{ {{\rm{i}},{\rm{j}},{\rm{k}}} \right\}} \right\}\) donde \({\rm{i}} = \left( {1,0,0} \right)\), \({\rm{j}} = \left( {0,1,0} \right)\) y \({\rm{k}} = \left( {0,0,1} \right)\). Algo así como decir que \(\text{i}\) mide la anchura, \(\text{j}\) la profundidad y \(\text{k}\) la altura. De modo que, por ejemplo, el vector \(\vec u\left( {3,4,2} \right)\) tiene tres unidades de anchura, cuatro de profundidad y dos de altura.

Pues bien, un vector es siempre linealmente independiente y genera una recta (la recta que lo contiene, que es un espacio de dimensión uno). Dos vectores son linealmente independientes si tienen distinta dirección, en cuyo caso generan todo un plano (el plano que los contiene, que es de dimensión dos). Si dos vectores no tienen distinta dirección serán proporcionales (uno se puede poner como el otro multiplicado por un número) y no son linealmente independientes. Tres vectores son linealmente independientes si no están situados en un mismo plano (no coplanarios) y generan todo el espacio, que es de dimensión tres.

¿Qué queremos decir cuando hablamos de que dos vectores linealmente independientes generan el plano que los contiene? Pues que, combinando adecuadamente los dos vectores, podemos llegar a cualquier otro vector del plano.

Veamos un ejemplo. Para ello volvamos a la dimensión dos. Consideremos los vectores \(\left( {1,3} \right)\) y \(\left( {-2,1} \right)\), que tienen distinta dirección. Por tanto, según hemos definido anteriormente, son linealmente independientes, y generan todo el plano de dimensión dos. Esto quiere decir que cualquier otro vector se puede poner como combinación de ellos. Pensemos, por ejemplo en el vector \(\left( {3,-5} \right)\). ¿Podremos llegar a él usando los vectores \(\left( {1,3} \right)\) y \(\left( {-2,1} \right)\)? Es decir, ¿existirán números reales \(x\), \(y\) tales que \(x\left( {1,3} \right) + y\left( { - 2,1} \right) = \left( {3, - 5} \right)\)? Seguro que sí. Veamos:

\[x\left( {1,3} \right) + y\left( { - 2,1} \right) = \left( {3, - 5} \right) \Leftrightarrow \left( {x,3x} \right) + \left( { - 2y,y} \right) = \left( {3, - 5} \right) \Leftrightarrow\]

\[\Leftrightarrow\left( {x - 2y,3x + y} \right) = \left( {3, - 5} \right) \Leftrightarrow \left\{ \begin{array}{l}
x - 2y = 3\\
3x + y = - 5
\end{array} \right.\]

Resolviendo el sistema anterior se obtiene \(x =  - 1\), \(y=-2\). Esto quiere decir que si el vector \(\left( {1,3} \right)\) lo multiplicamos por \(-1\) (o sea, le cambiamos el sentido), el vector \(\left( {-2,1} \right)\) lo multiplicamos por \(-2\) (o sea, lo duplicamos en longitud y le cambiamos el sentido) y, finalmente, sumamos ambos resultados, obtenemos como resultado el vector \(\left( {3,-5} \right)\). Esto, en matemáticas, se resume diciendo que el vector \(\left( {3,-5} \right)\) se puede poner como combinación lineal de los vectores \(\left( {1,3} \right)\) y \(\left( {-2,1} \right)\):

\[\left( {3, - 5} \right) =  - 1\left( {1,3} \right) + \left( { - 2} \right)\left( { - 2,1} \right)\]

Podemos ver el resultado en la figura siguiente:

sistemas02

Si en el sistema \(\left\{ \begin{array}{l}
Ax + By + C = 0\\
A'x + B\,'y + C' = 0
\end{array} \right.\) escribimos los términos independientes en el segundo miembro, lo podemos reescribir así:

\[\left\{ \begin{array}{l}
{a_{11}}x + {a_{12}}y = {b_1}\\
{a_{21}}x + {a_{22}}y = {b_2}
\end{array} \right.\]

Una vez escrito así vamos incluso a disponer de una forma más cómoda el sistema. Llamaremos \(A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}\\
{{a_{21}}}&{{a_{22}}}
\end{array}} \right)\) matriz de los coeficientes del sistema y \(A|b = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{b_1}}\\
{{a_{21}}}&{{a_{22}}}&{{b_2}}
\end{array}} \right)\) a la matriz ampliada del sistema. No descubrimos nada nuevo si pensamos en una matriz como una disposición de elementos en filas y en columnas. Obsérvese que al escribir la matriz ampliada \(A|b\) tenemos completamente definido el sistema sin necesidad de escribir las incógnitas.
Ahora, la posición relativa de las dos rectas depende del carácter de la matriz de los coeficientes \(A\) y del de la matriz ampliada \(A|b\), en el siguiente sentido:

  • Si las rectas son coincidentes, las filas de la matriz \(A\) son proporcionales y las de la matriz \(A|b\) también.
  • Si las rectas son paralelas, las filas de la matriz \(A\) son proporcionales, pero no los son las de la matriz \(A|b\).
  • Si las rectas son secantes, las filas de la matriz \(A\) no son proporcionales y, por tanto, tampoco lo son los de la matriz \(A|b\).

Este carácter de las matrices en matemáticas se conoce con el nombre de rango de una matriz. Hemos de observar que las filas de las matrices las podemos ver como vectores (con dos, tres, cuatro,\(\ldots\,\) coordenadas). Se define el rango de una matriz como el número de filas (vectores) linealmente independientes. Esto nos lleva a reescribir la posición relativa de dos rectas, en función de los rangos de la matriz de los coeficientes \(A\) y de la matriz ampliada \(A|b\), del siguiente modo:

  • Si las rectas son coincidentes, entonces \(\text{rango}A=\text{rango}A|b=1\).
  • Si las rectas son paralelas, entonces \(\text{rango}A=1\neq\text{rango}A|b=2\).
  • Si las rectas son secantes, entonces \(\text{rango}A=\text{rango}A|b=2\).

Estas ideas se pueden generalizar a un sistema de \(m\) ecuaciones y \(n\) incógnitas. Según el teorema de Rouché-Frobenius, para que un sistema del tipo anterior tenga solución se ha de cumplir que el rango de la matriz de los coeficientes ha de ser igual al rango de la matriz ampliada: \(\text{rango}A=\text{rango}A|b\). Además, si este número es igual al número de incógnitas \(n\), el sistema tiene solución única (sistema compatible determinado). Sin embargo, si este número es menor que el número de incógnitas, el sistema tiene infinitas soluciones (sistema compatible indeterminado). Por último, si \(\text{rango}A\neq\text{rango}A|b\). el sistema no tiene solución (sistema incompatible).

Seguiremos dándole vueltas a todo esto en un artículo que dedicaremos a los sistemas de ecuaciones lineales de primer grado con tres incógnitas.


Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín

Una ecuación lineal es una ecuación polinómica de grado uno con una o varias incógnitas.

Si la ecuación solamente tiene una incógnita la ecuación es de la forma

\[ax+b=0\]

donde \(a\) y \(b\) son números reales con \(a\neq0\) , y \(x\) es la incógnita.

Como \(a\neq0\) , \(a\) tiene inverso, con lo que podemos despejar la incógnita con facilidad.

\[ax + b = 0\, \Rightarrow {a^{ - 1}} \cdot \left( {ax + b} \right) = {a^{ - 1}} \cdot 0 \Rightarrow {a^{ - 1}}ax + {a^{ - 1}}b = 0 \Rightarrow x + {a^{ - 1}}b = 0 \Rightarrow x =  - {a^{ - 1}}b\]

Así por ejemplo, la solución de \(3x+4=0\) es \(x =  - {3^{ - 1}} \cdot 4 =  - \dfrac{1}{3} \cdot 4 =  - \dfrac{4}{3}\).

Si la ecuación tiene dos incógnitas la ecuación adopta la forma

\[ax+by+c=0\]

donde \(a\), \(b\) y \(c\) son números reales con \(a\neq0\) y \(b\neq0\), y las incógnitas son \(x\) e \(y\). Llamando por ejemplo \(x=\lambda\), podemos despejar la incógnita \(y\).

\[ax + by + c = 0 \Rightarrow by =  - a\lambda  - c \Rightarrow y =  - \frac{a}{b}\lambda  - \frac{c}{b}\]

El hecho de llamar \(\lambda\) a la incógnita \(x\) viene a decir que la incógnita \(x\) puede tomar cualquier valor real, al que llamaremos parámetro. Por tanto, la incógnita \(y\) depende del valor que le demos al parámetro \(\lambda\).

Podemos escribir las soluciones para \(x\) y para \(y\) en forma de par ordenado, de la siguiente manera:

\[\left( {x,y} \right) = \left( {\lambda , - \frac{a}{b}\lambda  - \frac{c}{b}} \right)\]

Veamos un ejemplo. Sea la ecuación lineal de primer grado con dos incógnitas dada por \(2x-y+3=0\). En este caso \(a=2\), \(b=-1\) y \(c=3\). Por tanto las soluciones son de la forma:

\[\left( {x,y} \right) = \left( {\lambda , - \frac{2}{{ - 1}}\lambda  - \frac{3}{{ - 1}}} \right) = \left( {\lambda ,2\lambda  + 3} \right)\]

Ahora, si damos valores a \(\lambda\) podemos hacer una tabla de valores:

\[\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
  \hline
  x & \lambda & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 \\
  \hline
  y & 2\lambda+3 & -7 & -5 & -3 & -1 & 1 & 3 & 5 & 7\\
  \hline
\end{array}\]

Incluso podemos representar los valores anteriores usando unos ejes de coordenadas.

recta01

No es difícil darse cuenta de que podemos colocar infinitos puntos y que todos ellos formarán una recta. Por eso, a la expresión de una ecuación lineal de primer grado con dos incógnitas, también se la conoce como ecuación general de una recta.

Además ya sabíamos que, si de la ecuación \(ax+by+c=0\), despejamos la incógnita \(y\) tenemos otra ecuación con la forma \(y=mx+n\), llamada ecuación afín de la recta. En nuestro ejemplo la ecuación afín de la recta es \(y=2x+3\). Y en esta ecuación es donde podemos con facilidad realizar también la tabla de valores anterior con el objetivo de representar gráficamente la recta dada.

Con algo de conocimiento de geometría en el plano afín podemos hacer más cosas con la ecuación lineal de primer grado con dos incógnitas. Ya hemos visto que las soluciones las podemos escribir en forma de par ordenado:

\[\left( {x,y} \right) = \left( {\lambda , - \frac{a}{b}\lambda  - \frac{c}{b}} \right)\]

Recordemos que, dados dos pares ordenados \(\left( {a,b} \right)\), \(\left( {c,d} \right)\), y un número real \(\lambda\), la suma de pares ordenados y el producto de un número real por un par ordenado, vienen dadas por las fórmulas:

\[\left( {a,b} \right) + \left( {c,d} \right) = \left( {a + c,b + d} \right)\quad\text{;}\quad\lambda \left( {a,b} \right) = \left( {\lambda a,\lambda b} \right)\]

Si se establecen unos ejes cartesianos sobre un plano, un par ordenado \(\left( {a,b} \right)\) tiene una visualización gráfica: un punto en el plano. O también: el par ordenado lo podemos ver como un vector con origen en el punto \(\left( {0,0} \right)\) (origen de coordenadas) y extremo el punto \(\left( {a,b} \right)\).

Con las ideas anteriores, las soluciones de una ecuación lineal de primer grado con dos incógnitas, \(ax+by+c=0\), las podemos escribir así:

\[\left( {x,y} \right) = \left( {\lambda , - \frac{a}{b}\lambda  - \frac{c}{b}} \right) = \left( {\lambda , - \frac{a}{b}\lambda } \right) + \left( {0, - \frac{c}{b}} \right) = \lambda \left( {1, - \frac{a}{b}} \right) + \left( {0, - \frac{c}{b}} \right)\]

Siguiendo con el ejemplo visto anteriormente podemos escribir las soluciones de la ecuación \(2x-y+3=0\) del siguiente modo:

\[\left( {x,y} \right) = \lambda \left( {1,2} \right) + \left( {0,3} \right)\]

La interpretación geométrica de la expresión anterior es la siguiente: la recta \(2x-y+3=0\) es la recta paralela al vector \(\left( {1,2} \right)\) que pasa por el punto \(\left( {0,3} \right)\). Dicho de otro modo: todos los puntos de esta recta son los extremos de los vectores que se obtienen al sumar cualquier vector proporcional al vector \(\left( {1,2} \right)\) con el vector \(\left( {0,3} \right)\).

Por ejemplo, si \(\lambda=1\), entonces \(\left( {x,y} \right) =  - 1\left( {1,2} \right) + \left( {0,3} \right) = \left( { - 1, - 2} \right) + \left( {0,3} \right) = \left( { - 1,1} \right)\). Véase la figura siguiente:

recta02

Analizando todo lo anterior llegamos a una conclusión: una recta viene completamente determinada por un vector y un punto. O lo que es lo mismo, existe una única recta que pasa por un punto dado y en una dirección determinada. Al vector que determina la recta se le llama vector de dirección o vector director de la recta.

Generalicemos esta situación desde el punto de vista vectorial. Para ello llamaremos \(O\), al origen de coordenadas, \(A\) a un punto cualquiera del plano, \(\overrightarrow {OA}\) al vector de posición con origen en \(O\) y extremo en \(A\) y \(\vec e\) a un vector. La ecuación de la recta que pasa por el punto \(A\) con la dirección del vector \(\vec e\) viene dada por

\[\overrightarrow {OX}  = \overrightarrow {OA} \, + \lambda \vec e\,,\,\,\lambda  \in \mathbb{R}\]

donde \(\overrightarrow {OX}\) es el vector de posición con origen en \(O\) generado al dar un determinado valor al parámetro \(\lambda\).

Naturalmente, las coordenadas de los vectores están escritas en base a un sistema de referencia pues, en caso contrario, no podríamos trabajar con éstas. Habitualmente, y tal y como hemos hecho en el ejemplo anterior, esto es algo a lo que estamos acostumbrados cuando instalamos en el plano unos ejes cartesianos (el eje de abscisas y el eje de ordenadas). Pero es conveniente poner énfasis en esto. Cuando hablamos de tomar, por ejemplo, el vector \(\vec e = \left( { - 2,3} \right)\), y lo visualizamos en el plano como un segmento orientado desde el origen de coordenadas \(O = \left( {0,0} \right)\) hasta el extremo en el punto de coordenadas \(\left( { - 2,3} \right)\), lo que estamos haciendo realmente es la siguiente operación:

\[\left( { - 2,3} \right) =  - 2\left( {1,0} \right) + 3\left( {0,1} \right)\]

Si ahora visualizamos los vectores \(\left( {1,0} \right)\) y \(\left( {0,1} \right)\) nos daremos cuenta rápidamente de que el primero está sobre el eje \(X\), el segundo sobre el eje \(Y\) y ambos tienen longitud o módulo \(1\). Además son claramente perpendiculares. En este caso se dice que la pareja de vectores son ortonormales o que forman una base ortonormal del plano.

Pero es que cualquier vector \(\left( {a,b} \right)\) lo podemos escribir así:

\[\left( {a,b} \right) = a\left( {1,0} \right) + b\left( {0,1} \right)\]

La igualdad anterior expresa que todo vector del plano, o lo que es lo mismo, todo el plano, se puede generar a partir de los vectores \(\left( {1,0} \right)\) y \(\left( {0,1} \right)\). A veces se dice que todo vector del plano es una combinación lineal de \(\left( {1,0} \right)\) y \(\left( {0,1} \right)\). Estos dos vectores, junto con el origen de coordenadas \(O\), forman lo que se conoce como sistema de referencia afín. Además, si los dos vectores del sistema son ortonormales hablaremos de un sistema de referencia ortonormal. Suele nombrarse a los dos vectores del sistema así: \(\textbf{i} = \left( {1\,,\,0} \right)\), \(\textbf{j} = \left( {0\,,\,1} \right)\).

En realidad, la geometría en el plano afín empieza por aquí. Se considera un sistema de referencia afín ortonormal \(R = \left\{ {O\,,\,\left\{ {\textbf{i}\,,\,\textbf{j}} \right\}} \right\}\). Se sabe que todo vector que se apoye en \(O\) se puede poner como combinación lineal de \(\textbf{i}\) y de \(\textbf{j}\): \(X = \overrightarrow {OX}  = {x_1}{\textbf{i}} + {x_2}{\textbf{j}} = \left( {{x_1},{x_2}} \right)\). Por tanto un vector cualquiera del plano lo podemos "atrapar" en nuestro sistema de referencia. ¿Cómo? Es sencillo. Todo vector \(\vec e\) del plano tiene un origen \(A\left( {{a_1},{a_2}} \right)\) y un extremo \(B\left( {{b_1},{b_2}} \right)\) y por tanto \(\vec e = \overrightarrow {AB} \). Pero además es que (ver figura de más abajo):

\[\overrightarrow {OB}  = \overrightarrow {OA}  + \overrightarrow {AB}  \Rightarrow \overrightarrow {AB}  = \overrightarrow {OB}  - \overrightarrow {OA}  \Rightarrow \]

\[\Rightarrow \overrightarrow {AB}  = \left( {{b_1},{b_2}} \right) - \left( {{a_1},{a_2}} \right) \Rightarrow \overrightarrow {AB}  = \left( {{b_1} - {a_1},{b_2} - {a_2}} \right)\]

recta03

Por ejemplo, el vector \(\vec e\) que une el punto \(P\left( { - 2\,,\,1} \right)\) con el punto \(Q\left( { 1\,,\,3} \right)\) es

\[\vec e = \overrightarrow {PQ}  = \left( {1 - \left( { - 2} \right),3 - 1} \right) = \left( {3,2} \right)\]

Nuestro vector \(\vec e\) acaba de ser escrito en base a nuestro sistema de referencia. Hay infinitos vectores en el plano con el mismo módulo, dirección y sentido, pero sólo uno que se apoya en el origen \(O\) de nuestro sistema de referencia. Al conjunto de todos los vectores con el mismo módulo, dirección y sentido se le llama vector libre.

Con las consideraciones anteriores la ecuación vectorial de la recta que pasa por el punto \(A\) con la dirección de un vector \(\vec e\), \(\overrightarrow {OX}  = \overrightarrow {OA} \, + \lambda \vec e\,,\,\,\lambda  \in\mathbb{R} \), adquiere todo su sentido.

recta04

Si la ecuación vectorial la expresamos en coordenadas tenemos:

\[\left( {x,y} \right) = \left( {a,b} \right) + \lambda \left( {{e_1},{e_2}} \right) \Rightarrow \left( {x,y} \right) = \left( {a,b} \right) + \left( {\lambda {e_1},\lambda {e_2}} \right) \Rightarrow \left( {x,y} \right) = \left( {a + \lambda {e_1},b + \lambda {e_2}} \right)\]

Igualando coordenadas:

\[\left\{ \begin{array}{l}
x = a + \lambda {e_1}\\
y = b + \lambda {e_2}
\end{array} \right.\]

Las ecuaciones anteriores reciben el nombre de ecuaciones paramétricas de la recta. De éstas, si despejamos el parámetro \(\lambda\) en ambas e igualamos, obtenemos la ecuación continua de la recta:

\[\left\{ \begin{array}{l}
\lambda  = \dfrac{{x - a}}{{{e_1}}}\\
\lambda  = \dfrac{{y - b}}{{{e_2}}}
\end{array} \right. \Rightarrow \frac{{x - a}}{{{e_1}}} = \frac{{y - b}}{{{e_2}}}\]

Si ahora eliminamos denominadores y pasamos todo al primer miembro tenemos:

\[{e_2}x - {e_2}a = {e_1}y - {e_1}b \Rightarrow {e_2}x - {e_1}y + {e_1}b - {e_2}a = 0\]

Si llamamos \(A = {e_2}\), \(B =  - {e_1}\) y \(C = {e_1}b - {e_2}a\) tenemos la ecuación general o implícita de la recta:

\[Ax + By + C = 0\]

Obsérvese que un vector director de la recta es \(\left( {{e_1},{e_2}} \right) = \left( { - B,A} \right)\) y que haciendo \(x=0\) se obtiene \(y=-\dfrac{C}{B}\) (conocida como ordenada en el origen), con lo que un punto de la recta (el que corta al eje \(Y\)) es \(\left( {0, - \dfrac{C}{B}} \right)\).

Volviendo a nuestro primer ejemplo, en el que considerábamos la recta \(2x-y+3=0\), tenemos que un vector director suyo es \(\left( { - B,A} \right) = \left( {1,2} \right)\) y que un punto suyo es \(\left( {0, - \dfrac{C}{B}} \right) = \left( {0,3} \right)\). Así obtenemos la ecuación vectorial \(\left( {x,y} \right) = \lambda \left( {1,2} \right) + \left( {0,3} \right)\), ecuación que ya habíamos deducido en su momento.


Para saber más puedes seguir este curso de geometría métrica plana en 10 sencillas lecciones.

Puedes descargar el artículo completo en pdf haciendo clic aquí.


Leer más ...

Sobre la ecuación de tercer grado (III)

Esta es la continuación de la entrada "Sobre la ecuación de tercer grado (II)"

El rumor del concurso entre Tartaglia y Fiore se extendió como la pólvora, llegando a oídos de Gerolamo Cardano (1501-1576), una de las figuras más brillantes y controvertidas del siglo XVI. Cardano era hijo ilegítimo del abogado milanés Fazio Cardano. Este último asesoró a Leonardo da Vinci en geometría en diversas ocasiones y animó a su hijo a estudiar matemáticas, los clásicos y medicina en las universidades de Pavía y Padua. En sus años de estudiante Cardano convirtió el juego en su principal fuente de sustento financiero. Jugaba a las cartas, a los dados y al ajedrez y convertía en beneficio sus conocimientos sobre la teoría de probabilidades. Su adicción al juego la plasmó en un libro, "El libro de los juegos de azar", el cual fue la primera obra sobre cálculo de probabilidades. A Cardano le costó doctorarse porque era maleducado, de malos modales, además de vociferar siempre que podía. Sus profesores lo miraban con antipatía y al final de sus estudios le denegaron el doctorado en medicina por amplia mayoría. Fracasaron todos sus intentos de obtener una plaza de médico en Milán. Sin embargo, en 1534 y gracias a la influencia de su padre, fue nombrado profesor de matemáticas en la Fundación Piatti. Al mismo tiempo practicaba la medicina de forma clandestina de manera extremadamente eficaz, lo que le reportó gran éxito. Pero el Colegio de Médicos de Milán no le apoyaban en absoluto y Cardano, ni corto ni perezoso, llevó su disputa con el colegio a un enfrentamiento, publicando un libro en el que ridiculizaba las maneras de los médicos de su época. La ofensa de Cardano, paradójicamente, no sólo le sirvió para consolidarse como médico sino para convertirse en uno de los profesionales de la medicina más reconocidos de Europa.

Cardano prosperó gracias a la controversia y a la competición. Era de ingenio rápido y de lengua afilada. Ganó muchos debates, tanto durante su época de estudiante como en su sabia madurez. Por eso las noticias del concurso entre Tartaglia y Fiore despertaron su curiosidad. Encontró muy atractiva la idea de incluir la solución de la ecuación de tercer grado en una obra que estaba escribiendo: "La práctica de la aritmética y la medición simple". Trató de descubrir la solución por sí mismo pero, habiendo fracasado, decidió enviar al librero Zuan Antonio da Bassano a Tartaglia para convencerle de que le revelara su fórmula. Tartaglia se negó, descartando todas las propuestas que le hizo Cardano. Pero, finalmente, se dejó engatusar pues Cardano le ofreció a Tartaglia presentarlo ante el virrey y comandante en jefe de Milán, Alfonso d’Avalos. Tartaglia había escrito un libro sobre artillería y un contrato con el virrey le garantizaría unos buenos ingresos.

Cardano intentó de todas las formas posibles camelarse a Tartaglia para arrancarle la solución. Pero éste no daba su brazo a torcer. Incluso rechazó la proposición de Cardano de incluir un capítulo especial en el libro anunciando que Tartaglia había descubierto la solución.Gerolamo Cardano

De lo que pasó después sólo se sabe por el testimonio del propio Tartaglia, que dista mucho de ser objetivo. Él mismo afirma que finalmente accedió a divulgar el secreto a Cardano, pero únicamente después de que este hubiera realizado un solemne juramento: «Juro ante ti por el Sagrado Evangelio y por mi fe de caballero, no sólo no publicar jamás tus descubrimientos si me los revelas, sino que también prometo y comprometo mi fe como verdadero cristiano que los escribiré en clave para que después de mi muerte nadie pueda comprenderlos». Sin embargo, Ludovico Ferrari, que era en ese momento secretario en casa de Cardano, explica una historia muy diferente. Según Ferrari, Cardano no realizó ningún juramento de silencio. Ferrari afirma haber estado presente en esa conversación y dijo que Tartaglia reveló su secreto simplemente a cambio de la hospitalidad de Cardano. La cuestión es que, aun conociendo Cardano la solución, su libro se publicó en 1539 sin la solución de Tartaglia.

Ludovico Ferrari (1522-1565) llegó a casa de Cardano con catorce años, procedente de Bolonia. Cardano se apercibió de su gran talento y asumió la responsabilidad de su educación. Tras conocer la solución de Tartaglia, Cardano no sólo consiguió encontrar una prueba de ella, sino que empezó a trabajara en ecuaciones de tercer grado de carácter general:

\[ax^3+bx^2+cx+d=0\]

Los matemáticos del siglo XVI trataban separadamente los trece diferentes tipos de ecuaciones de tercer grado sin asumir todavía que estos no eran más que casos particulares de la ecuación general. Al mismo tiempo el brillante Ferrari, con el apoyo de Cardano, se las ingenió incluso para encontrar, en 1540, una estupenda solución de la ecuación de cuarto grado

\[x^4+6x^2+36=60x\]

Por esa época llego a oídos de Cardano el rumor de que Scipione dal Ferro había dejado su fórmula original a su yerno. En 1543 Cardano y Ferrari viajaron a Bolonia para encontrarse con Annibale della Nave, a quien había sido confiado el artículo original de Scipione dal Ferro. Consiguieron confirmar que, en efecto, dal Ferro había descubierto veinte años antes la misma solución que Tartaglia. Aunque fuera cierto que Cardano había hecho el juramento ante Tartaglia, esto le bastó para liberarse de su obligación. Después de todo, el juramento se refería a no revelar la fórmula de Tartaglia, no la de dal Ferro. En 1545 Cardano publicó la obra que muchos matemáticos consideran que marca el principio del álgebra moderna: "Artis magnae sive de regulis algebraicis liber unus" (El gran arte o las reglas del álgebra, libro uno), comúnmente conocida como "Ars Magna". En esta obra, Cardano explora con gran detalle las ecuaciones de tercer y cuarto grado y sus soluciones. Demuestra por primera vez que las soluciones pueden ser negativas, irracionales y en algunos casos pueden incluso implicar raíces cuadradas de número negativos, que en el siglo XVII se denominarían «números imaginarios». La primera edición del "Ars Magna" se extendió rápidamente por la Europa matemática obteniendo reconocimiento inmediato.

Sin embargo, la furia de Tartaglia fue inimaginable…

Continuará...


 Extracto del libro "La ecuación jamás resuelta", de Mario Livio

Leer más ...

Sobre la ecuación de tercer grado (II)

Esta es la continuación de la entrada "Sobre la ecuación de tercer grado (I)"

Durante el siglo XVI resurgió en Bolonia el interés por las matemáticas. En ocasiones, matemáticos y otros eruditos se enzarzaban en debates públicos. Estas disputas atraían no sólo a profesores universitarios y jueces que se designaban para dirimir el resultado de las mismas, sino también a estudiantes, partidarios de los litigantes y espectadores que acudían a divertirse o incluso para apostar. Hasta los propios contendientes apostaban anticipadamente mucho dinero a su victoria. De estas disputas dependía no sólo la reputación del matemático en la ciudad o en la universidad, sino también el hecho de conservar un puesto e incrementar el salario. Las disputas tenían lugar en plazas públicas, en iglesias y en las cortes de nobles y príncipes.

Antonio Maria Fiore, del que ya sabemos que conocía el secreto de la solución de dal Ferro, fue un matemático bastante mediocre. Una vez muerto Scipione dal Ferro, tampoco publicó la solución de inmediato, pero la utilizó como suya para así explotarla. Decidió esperar el momento adecuado para hacerlo con el objetivo de hacerse un nombre. En una sociedad en la que la renovación de los nombramientos universitarios dependía bastante del éxito en los debates, tener un as en la manga podía ser de una importancia vital para sobrevivir. En 1535 se le presentó a Fiore la oportunidad y desafió al matemático Niccolò Tartaglia a una competición pública para resolver problemas. ¿Quién era este Tartaglia y por qué fue el elegido?

Niccolò Tartaglia nació en Brescia en el año 1500. Su apellido original era probablemente Fontana, pero se le apodó Tartaglia (que tartagliasignifica «el tartamudo») a causa de un corte de sable que recibió en la boca a la edad de doce años de un soldado francés. En la edad adulta, siempre llevaba barba para ocultar las cicatrices que le desfiguraban. Tartaglia procedía de una familia muy pobre. Su padre, Michele, un correo postal, murió cuando Niccolò tenía seis años, dejando a la viuda y a sus hijos en la miseria. Tartaglia tuvo que abandonar sus estudios de lectura y escritura porque la familia se quedó sin dinero para pagar al tutor. Sin embargo, continuó la labor el sólo y, pese a estas desgraciadas circunstancias, Tartaglia demostró ser un matemático de talento. Finalmente, después de pasar un tiempo en Verona, en 1534 se trasladó a Venecia para ejercer como profesor de matemáticas. Por esta época, tal y como él mismo afirma en sus memorias, hacía ya unos cuatro años que Tartaglia había conseguido, no sin grandes esfuerzos, resolver la ecuación de tercer grado

\[x^3+3x^2=5\]

Este reto se lo planteó su conciudadano bresciano, Zuanne de Tonini da Coi. Los rumores de la afirmación de Tartaglia de que era capaz de resolver ecuaciones de tercer grado debieron de llegar a oídos de Antonio Maria Fiore quién, escéptico, creía estar convencido de que Tartaglia mentía. Confiado en su capacidad de derrotar a Tartaglia gracias a su conocimiento secreto de la solución de Scipione dal Ferro, Fiore lanzó el desafío. Poco después, Fiore y Tartaglia llegaron a un acuerdo sobre las condiciones exactas para el concurso. Cada uno de ellos propondría treinta problemas a su oponente para que los resolviera. Después los problemas se sellarían y quedarían depositados en el notario Maestro Per Iacomo di Zambelli. Los dos concursantes fijaron un plazo de cuarenta a cincuenta días para que cada uno intentara resolver los problemas, una vez que se abrieran los sellos. Acordaron que el que resolviera mayor número de problemas sería considerado ganador y además de los honores recibiría una generosa recompensa por cada problema. Resultó que Fiore, en efecto, sólo tenía una oportunidad: todos los problemas que planteó eran de la forma de los que él conocía la solución:

\[ax^3+bx=c\]

Por otra parte, la lista de Tartaglia contenía treinta problemas diversos, cada uno de un tipo diferente. Según sus propias palabras, «para demostrarle que no le tenía en gran concepto y que no tenía razón alguna para temerle».

La fecha del concurso fue fijada para el 12 de febrero de 1535. Asistieron varios dignatarios universitarios y algunos miembros de la alta sociedad veneciana. Cuando se entregaron los problemas a los dos adversarios, sucedió algo completamente inesperado. Ante el asombro de los espectadores, Tartaglia resolvió todos los problemas que se le habían planteado en tan sólo dos horas. Fiore no logró resolver ni uno solo de los que le presentó Tartaglia. Veinte años después Tartaglia relataba así los hechos:

La razón por la que fui capaz de resolver sus 30 problemas en un tiempo tan corto es que los 30 estaban relacionados con operaciones del álgebra de incógnitas y cubos que eran igual a números. Él lo hizo creyendo que yo no podría resolver ninguno de ellos porque Fra Luca Pacioli afirma en su tratado que es imposible resolver estos problemas con una regla general. Sin embargo, por fortuna, tan sólo ocho días antes del plazo fijado para recoger del notario los dos grupos de 30 problemas lacrados, descubrí la regla general para esas expresiones.

De hecho, un día después de la solución de

\[ax^3+bx=c\]

Tartaglia también descubrió la solución de

\[ax+b=x^3\]

Como también sabía resolver

\[x^3+ax^2=b\]

(el reto que le lanzó da Coi), Tartaglia se convirtió de la noche a la mañana en el experto mundial en la resolución de ecuaciones de tercer grado. Sin embargo, rechazó una sugerencia de da Coi de publicar su solución en seguida, pues Tartaglia tenía la intención de escribir un libro sobre el tema. Las fórmulas descubiertas por Niccolò Tartaglia eran tan complicadas que él mismo encontraba difícil recordar sus propias reglas para los tres casos. Para ayudarse a memorizarlas compuso algunos poemas.

Tartaglia dejó de ser un anónimo profesor de matemáticas y se convirtió en una celebridad matemática.

Pero no quedó ahí la cosa. Los momentos más álgidos de esta historia de matemáticos, aún estaban por venir…

Continúa en "Sobre la ecuación de tercer grado (III)"


 Extracto del libro "La ecuación jamás resuelta", de Mario Livio

Leer más ...

Ecuaciones de primer y de segundo grado

Los apuntes de ecuaciones de primer y de segundo grado que se pueden descargar en un apartado al final de este artículo, están dirigidos a chicos y chicas que cursen matemáticas de segundo o de tercero de Educación Secundaria Obligatoria (ESO). Están enfocados desde un punto de vista eminentemente práctico y contienen, como ejemplo de resolución, 15 ecuaciones completamente resueltas. No contienen por tanto la demostración de la obtención de la conocida fórmula para resolver la ecuación de segundo grado, que quizá sea preferible desarrollarla en cuarto de ESO. Del mismo modo tampoco se incluyen las propiedades de la suma y del producto de las soluciones de una ecuación de segundo grado. Los contenidos que se desarrollan se exponen a continuación.

Ecuaciones de primer grado

1. Definición, elementos y solución de la ecuación de primer grado.

2. Procedimiento para resolver una ecuación de primer grado.

Ecuaciones de segundo grado

1. Definición y elementos de la ecuación de segundo grado.

2. Ecuaciones de segundo grado incompletas.

3. Ecuación de segundo grado. Caso general.

4. Procedimiento para resolver una ecuación de segundo grado.

Leer más ...
Suscribirse a este canal RSS

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas