Menu
La regla de Cramer

La regla de Cramer

Consideremos un sistema d...

¿Necesitas ayuda con las matemáticas? ¿Piensas que nunca serás capaz de entenderlas?

¿Necesitas ayuda con las matemática…

Ahora puedes tener un pro...

Completando cuadrados. Aplicación al cálculo de primitivas o integrales indefinidas

Completando cuadrados. Aplicación a…

Supongamos que me piden c...

La Universidad Europea de Madrid (UEM)

La Universidad Europea de Madrid (U…

La Universidad Europea de...

Cuadratura de un segmento de parábola

Cuadratura de un segmento de parábo…

Una forma de acercarse al...

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las d…

Se proponen a continuaci&...

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El t…

Ya hemos hablado en un pa...

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. R…

Cuando en las matem&aacut...

Prev Next

Usos de la trigonometría. Cálculo de alturas y distancias (III)

Ver artículo en formato imprimible (pdf) aquí

Altura de un punto de pie accesible

Para calcular la altura de un punto de pie accesible se pueden presentar dos casos distintos. El primero de ellos, que el suelo sea horizontal (figura 1) y el segundo, que el suelo presente una determinada inclinación (ver figura 2).

 Altura de un punto de pie accesible

Si el suelo es horizontal (figura 1) el triángulo \(ABC\) es rectángulo y entonces es muy fácil hallar la altura \(h\).

\[\text{tg}\,\alpha=\frac{h}{\overline{CB}}\Rightarrow h=\overline{CB}\cdot\text{tg}\,\alpha\]

Si el suelo presenta una inclinación dada, \(\beta\) (figura 2), conocemos también el ángulo \(\widehat{ACB}=\alpha-\beta\) y el ángulo \(\widehat{CAB}=90^{\text{o}}-\alpha\). Utilizando el teorema de los senos tenemos:

\[\frac{\overline{CB}}{\text{sen}\,\widehat{CAB}}=\frac{x}{\text{sen}\,\widehat{ACB}}\Rightarrow\frac{\overline{CB}}{\text{sen}\,(90^{\text{o}}-\alpha)}=\frac{x}{\text{sen}\,(\alpha-\beta)}\]

Y de aquí podremos despejar con facilidad la altura \(x\):

\[x=\frac{\overline{CB}\cdot\text{sen}\,(\alpha-\beta)}{\text{sen}\,(90^{\text{o}}-\alpha)}\]

Ejemplo

Un pasillo plano de 10 metros de largo y que forma un ángulo de \(25^{\text{o}}\) con la horizontal, conduce al pie de una gran torre. Calcular la altura de ésta, sabiendo que desde el inicio del pasillo el ángulo de elevación de su punto más alto es de \(82^{\text{o}}\).

Solución

Cálculo de la altura de una torre

Llamemos \(x=\overline{AB}\) a la altura de la torre. En este caso \(\overline{CB}=10\), \(\widehat{ACB}=\alpha-\beta=82^{\text{o}}-25^{\text{o}}=57^{\text{o}}\) y \(\widehat{CAB}=90^{\text{o}}-\alpha=90^{\text{o}}-82^{\text{o}}=8^{\text{o}}\). Por tanto:

\[x=\frac{\overline{CB}\cdot\text{sen}\,(\alpha-\beta)}{\text{sen}\,(90^{\text{o}}-\alpha)}=\frac{10\cdot\text{sen}\,57^{\text{o}}}{\text{sen}\,8^{\text{o}}}\Rightarrow x\approxeq60,26\]

Así pues, la altura de la torre es de, aproximadamente, 60,26 metros.

volver arriba

lasmatematicas.eu

Aplicaciones

Sígueme

webs de matemáticas